Cyberprobe

for version 2.5.1, 6 June 2020

cybermaggedon

This manual is for Cyberprobe (version 2.5.1, 6 June 2020), which is an example in the
Texinfo documentation.
Copyright (©) 2013-2014 Cyber MacGeddon
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts, and with no Back-Cover Texts.

Cyberprobe

This is the manual for Cyberprobe (version 2.5.1, 6 June 2020).

cybermon
gaffer

cyber b .
probe cybermon cybermon
cybermon geoip detector cllEBiEEeE ElasticSearch

————

L
cybermon
cassandra

Cassandra

Cyberprobe is a network packet inspection toolkit (Deep Packet Inspection) for real-time
monitoring of networks. This has applications in network monitoring, intrusion detec-
tion, forensic analysis, and as a defensive platform. Cyberprobe packet inspection works
on physical networks, and also in cloud VPCs. There are features that allow cloud-scale
deployments.

This is not a single, monolithic intrusion detection toolkit which does everything you want
straight out of the box. If that’s what you need, I would suggest you look elsewhere. Instead,
Cyberprobe is a set of flexible components which can combined in many ways to manage
a wide variety of packet inspection tasks. If you want to build custom network analytics
there are many interfaces that make this straightforward.

The project maintains a number of components, including:

e cyberprobe, which collects data packets and forwards them a network stream protocol
in real time. Packet collection can be target with IP addresses, CIDR ranges or full-take.
Collected packets are tagged with a device identifier. cyberprobe can be integrated
with Snort to allow dynamic targeting of IP addresses in response to a Snort rule
hitting.

e cybermon, which receives collected packet streams, performs stateful processing and
creates a stream of observations describing network events. The events can be consumed
in many different ways e.g. the events can be delivered to a pub/sub system, or
presented to a gRPC service. The event handling is implemented as a function written
in Lua, so you can add your own custom event handling.

e a set of subscribers which can be used to do things with the captured data e.g. store
to ElasticSearch, Cassandra or Gaffer.

The architecture has support for AWS Traffic Mirroring, and supports cloud-scale deploy-
ments.

1 Overview

Summary

Cyberprobe is a network packet inspection toolkit (Deep Packet Inspection) for real-time
monitoring of networks. This has applications in network monitoring, intrusion detec-
tion, forensic analysis, and as a defensive platform. Cyberprobe packet inspection works
on physical networks, and also in cloud VPCs. There are features that allow cloud-scale
deployments.

This is not a single, monolithic intrusion detection toolkit which does everything you want
straight out of the box. If that’s what you need, I would suggest you look elsewhere. Instead,
Cyberprobe is a set of flexible components which can combined in many ways to manage
a wide variety of packet inspection tasks. If you want to build custom network analytics
there are many interfaces that make this straightforward.

The project maintains a number of components, including;:

e cyberprobe, which collects data packets and forwards them a network stream protocol
in real time. Packet collection can be target with IP addresses, CIDR ranges or full-take.
Collected packets are tagged with a device identifier. cyberprobe can be integrated
with Snort to allow dynamic targeting of IP addresses in response to a Snort rule
hitting.

e cybermon, which receives collected packet streams, performs stateful processing and
creates a stream of observations describing network events. The events can be consumed
in many different ways e.g. the events can be delivered to a pub/sub system, or
presented to a gRPC service. The event handling is implemented as a function written
in Lua, so you can add your own custom event handling.

e a set of subscribers which can be used to do things with the captured data e.g. store
to ElasticSearch, Cassandra or Gaffer.

Cyberprobe

The probe, cyberprobe has the following features:

e Can be tasked to collect packets from an interface and forward any which match a
configurable address list. The address list can be individual IP addresses, CIDR ranges,
or collect-all tasking (‘0.0.0.0/0).

e Can be configured to receive Snort alerts. In this configuration, when an alert is received
from Snort, the IP source address associated with the alert is dynamically targeted for
a configurable period of time. This is useful for e.g. collecting data from any network
actor who triggers a snort rule and is thus identified as a potential attacker.

e Can optionally offer a management API which allows remote interrogation of the state,
and alteration of the configuration. This allows dynamic alteration of the targeting
map, and integration with other systems.

e Can be configured to deliver on one of two standard stream protocols.

e Can insert a packet collection delay line of configurable duration. This can be useful
e.g. with snort alert triggering to make sure all packets which trigger an alert are
collected.

Chapter 1: Overview 3

Cybermon
The monitor tool, cybermon has the following features:

e Analyses packets delivered in the ETSI stream protocol from one or more cyberprobe
instances.

e Decodes a number of packet protocols to detect network events, which are delivered to
your configuration in near-real-time.

e Decoded information is made available to user-configurable logic (written in Lua) to
define how the decoded data is handled. Sample configuration files are provided to
deliver to RabbitMQ in JSON, a gRPC endpoint, and deliver to a redis queue.

e Packet forgery techniques are included, which allow resetting TCP connections, and
forging DNS responses. This can be invoked from your Lua configuration.

e Supports IP, TCP, UDP, ICMP, HTTP, DNS, SMTP, FTP, TLS and more.

The code is targeted at the Linux platform, although it is generic enough to be applicable
to other UN*X-like platforms.

Subscribers

The event stream from cybermon can be presented to a Pulsar exchange in protobuf form,
which can then be delivered to further analytics:

e evs-alert reports indicator hits in events to standard output.
e evs-cassandra loads events into Cassandra.

e evs-detector studies events for the presence of indicators. Events are annotated with
indicator hits of any are observed.

e evs—dump dumps raw event JSON to standard output.
e cvs-elasticsearch loads events into ElasticSearch.
e evs-gaffer loads network information into Gaffer (a graph database).

e evs-geoip looks up IP addresses in GeolP and annotates events with location infor-
mation.

e evs-monitor outputs event information to standard output.

Scaling

The architecture has support for AWS Traffic Mirroring, and supports cloud-scale deploy-
ments:

e Multiple cyberprobe instances can load-share across multiple cybermon instances be-
hind a load-balancer.

e The event stream from cybermon can be delivered to a pub/sub system to distribute
load and permit scale-up.

The easiest way to learn about the software is to follow our Quick Start tutorial.

Chapter 1: Overview 4

Revision history

Cyberprobe release highlights:

2.5

1.13

1.12.3
1.11.1
1.11.0

Pulsar and protobuf support added, permits events from cybermon to be de-
scribed in protobuf form, and delivered to a Pulsar pub/sub exchange. Renamed
cybermon- subscribers to evs- (Event Stream).

cybermon-detector refactored to use FSM-based evaluation of boolean expres-
sions.

cyberprobe-cli and control API reworked, protobuf and gRPC support. Ama-
zon Linux support.

Changed cyberprobe configuration file to use JSON instead of XML. JSON is
easier to integrate with automated processes.

Added VXLAN support to cybermon. This allows cybermon to receive the
VXLAN protocol which is e.g. used by AWS Traffic Mirroring,.

New simpler Lua API. Native JSON encoding boosts performance of JSON
output by 500%.

Cybermon decodes for: TLS, GRE, ESP.
Brought subscribers and docker-compose files up-to-date.
Altered handling of ‘origin’ to make it more resilient.

Added ‘origin’ field to identify whether or not the triggering device caused an
event.

Add RabbitMQ / AMQP 0.9.1 support for cybermon and subscribers.
Endace DAG package support added.

Gaffer subscriber brought up-to-date with Gaffer 1.0 API. GeolP and IOC pro-
cessor added to the subscriber model. Some unmaintained Lua code deprecated,
as the subscriber model takes care of the functionality.

Numerous fixes. UUID generation uses a good seed. ElasticSearch loading
fixed, Mac compilation fixed.

Changed ETSI sender so that packet streams are multiplexed over multiple
TCP streams.

Unbounded queue internal to cybermon has a queue limit, to prevent un-
bounded growth.

Timestamp information at the time of packet capture in cyberprobe is now
consistently passed through to cybermon and the Lua functions. The Lua
API has undergone significant change as a result of passing through timing
information.

Lua invocation mechanism has been replaced by a thread-safe queue function.

2 Obtaining the software

Deployment using containers

Deploying containers is by far the easiest way to get the software running. It is possible
to deploy a complete software stack for data capture and analysis using Docker containers
which requires the minimal amount of software installation. See Chapter 6 [A containerised
processing system], page 31.

Debian / Ubuntu repository

We use GoCD to build the software, and regularly release packages in DEB and RPM form.
Installing from the repository is the easiest way to install if you're not using containers.

In order to install, you need to add our signing key to your system:
wget -q -0- \
https://cybermaggedon.github.io/cyberprobe-release/cyberprobe.asc | \Jj
apt-key add -
We use this signing key:
pub rsa4096 2020-06-05 [SC]
E684 ECDC B4EA 9F64 DDDO 3D64 3C5A 9A8D 1389 8455
uid [ultimate] Cyber MacGeddon <cybermaggedon@gmail.com>
Once done you then add our repository to /etc/apt/sources.list.
For Debian Stretch, add:
deb https://cybermaggedon.github.io/cyberprobe-release/debian \
stretch main
For Ubuntu Bionic, add:
deb https://cybermaggedon.github.io/cyberprobe-release/ubuntu \
bionic main
For Ubuntu Disco, add:
deb https://cybermaggedon.github.io/cyberprobe-release/ubuntu \
disco main
Once added, the cyberprobe installation proceeds thus:
apt-get update
apt-get install cyberprobe

Fedora

To install using DNF, create file /etc/yum.repos.d/cyberprobe.repo

[cyberprobe]

name=Cyberprobe
baseurl=https://cybermaggedon.github.io/cyberprobe-release/fedora/$releasever/$basearc
gpgcheck=1

enabled=1

gpgkey=https://cybermaggedon.github.io/cyberprobe-release/cyberprobe.asc

Chapter 2: Obtaining the software 6

and then:
dnf install cyberprobe
We use this signing key:
pub rsad4096 2020-06-05 [SC]

E684 ECDC B4EA 9F64 DDDO 3D64 3C5A 9A8D 1389 8455
uid [ultimate] Cyber MacGeddon <cybermaggedon@gmail.com>

Amazon Linux

To install using Yum create file /etc/yum.repos.d/cyberprobe.repo:

[cyberprobe]
name=Cyberprobe
baseurl=https://cybermaggedon.github.io/cyberprobe-release/amazon/$releasever/$basearc
gpgcheck=1
enabled=1
gpgkey=https://cybermaggedon.github.io/cyberprobe-release/cyberprobe.asc
and then:
yum install cyberprobe
We use this signing key:
pub rsa4096 2020-06-05 [SC]
E684 ECDC B4EA 9F64 DDDO 3D64 3C5A 9A8D 1389 8455
uid [ultimate] Cyber MacGeddon <cybermaggedon@gmail.com>

Download packages

You can download packages manually; packages are currently available for Fedora, CentOS,
Debian and Ubuntu. Downloads are available on the project page at http://github.com/
cybermaggedon/cyberprobe/releases

Fedora packages are installed using dnf:
sudo dnf install <package>
Debian and Ubuntu packages are installed using dpkg:
sudo dpkg -i <package>
If there are dependency errors e.g. because you don’t have some dependencies installed,
you can install them thus:
sudo apt-get install -f

Install from source

Note: on many platforms, installing a package just adds the "run time" part of the code.
In order to be able to compile code against the run time, you need to install a separate
"developers kit" package. On Fedora, for instance, both libpcap and libpcap-devel are
needed in order to be able to build this code from source.

Note also that lua packages can be a little strange: sometimes the package will exist in
your distribution, at other times you need to install a utility called luarocks to install the
package.

http://github.com/cybermaggedon/cyberprobe/releases
http://github.com/cybermaggedon/cyberprobe/releases

Chapter 2: Obtaining the software 7

Source downloads are available on the project page at http: / / github . com /
cybermaggedon/cyberprobe/releases, look for the .tar.gz file.
These files can be unwrapped, then configured:

tar xvfz cyberprobe-X.Y.tar.gz

cd cyberprobe-X.Y

./configure

make

sudo make install

README.linux provides some hints for Linux users. If installing on MacOS, read
README . mac.

Installing from git

To checkout the latest code using git:
git clone https://github.com/cybermaggedon/cyberprobe
To build, use:

autoreconf -fi
./configure

make

sudo make install

Powered by Github, project page is at https: / / cybermaggedon . github . io /
cyberprobe-docs/.

Docker repository
There are two Docker repositories containing the Cyberprobe distribution. See http://
hub.docker.com/r/cybermaggedon/cyberprobe.

e docker.io/cybermaggedon/cyberprobe

e docker.io/cybermaggedon/cybermon
The only difference is the default command which is executed on running the container.
Here are some container invocations you may find useful:

e Run cyberprobe. You will need to create a configuration file and map it in to the
container.
sudo docker -it --rm -v /etc/cyberprobe:/etc/cyberprobe_host \
docker.io/cybermaggedon/cyberprobe \
cyberprobe /etc/cyberprobe_host/cyberprobe.fg
e Run cybermon. The cybermon container exposes port 9000.
sudo docker -it --rm -p 9000:9000 -v \
--net=host --privileged --cap-add=NET_ADMIN \
docker.io/cybermaggedon/cybermon \
cybermon -p 9000 -c /etc/cyberprobe/amgp-topic.lua
e Run evs-cassandra. You need to know the IP address of the host side of the Docker
bridge network, and provide addresses of the Cassandra servers.

sudo docker -it --rm -v \

http://github.com/cybermaggedon/cyberprobe/releases
http://github.com/cybermaggedon/cyberprobe/releases
https://cybermaggedon.github.io/cyberprobe-docs/
https://cybermaggedon.github.io/cyberprobe-docs/
http://hub.docker.com/r/cybermaggedon/cyberprobe
http://hub.docker.com/r/cybermaggedon/cyberprobe

Chapter 2: Obtaining the software 8

docker.io/cybermaggedon/cybermon \
evs-cassandra cyberprobe \
10.142.146.6,10.142.146.8

Running cyberprobe in a container makes the deployment easier, but it needs to run with
elevated privileges in order to sniff the network, which reduces some of the advantages of
running it in a container.

Dependencies

The code doesn’t have many dependencies. Exotic dependencies are:

LUA - 5.1 or later.

GCC C++ compiler and development support.

libpcap.

tcpdump - not needed to build the software, but we use it in the tutorial.
ncurses, needed for the command line admin utility.

readline, needed for the command line admin utility.

For STIX support, 1ibtaxii and stix are Python modules made available at http://
mitre.org which can be downloaded using pip.

Protobuf support, protobuf compiler and grpc for gRPC support (optional).

http://mitre.org
http://mitre.org

3 Quick start tutorial

3.1 Preparation

Build software

For installation, see Chapter 2 [Obtaining the software], page 5. There’s a fair amount of
development taking place in the git repository, so you probably want to get the a package,
or use the latest release on the downloads page (http://github.com/cybermaggedon/
cyberprobe/releases).

The compilation process compiles the following commands:

cyberprobe
Packet capture.

cybermon Data analyser, analyses the data streams and reports events.

etsi-rcvr
Test decoder for ETSI format data.

cyberprobe-cli
Cyberprobe control command-line client.

evs-cassandra
Pub/sub subscriber, delivers events to Cassandra.

evs—elasticsearch
Pub/sub subscriber, delivers events to ElasticSearch.

evs-gaffer
Pub/sub subscriber, delivers events to Gaffer.

evs—-geoip
Pub/sub subscriber, uses GeolP to add location information to events, and then
republishes them.

evs-detector
Pub/sub subscriber, looks for matches for STIX I0Cs, adds IOC information
to events, and then republishes them.

evs-dump Pub/sub subscriber, dumps out raw JSON messages.

evs-dump Pub/sub subscriber, alerts on matching IOCs.

If it installs / builds without errors, then it’s time to start something up. If you have
problems you can’t resolve raise an issue at (https://github . com/cybermaggedon /
cyberprobe/issues).

http://github.com/cybermaggedon/cyberprobe/releases
http://github.com/cybermaggedon/cyberprobe/releases
https://github.com/cybermaggedon/cyberprobe/issues
https://github.com/cybermaggedon/cyberprobe/issues

Chapter 3: Quick start tutorial 10

Establish network parameters

The simplest way to use cyberprobe is to use it on a Linux workstation, or in a virtual
machine. Maybe you’re using a Linux desktop now now? If so, you could use it to capture
all the data going to/from the internet. This will be a static configuration in order to keep
things simple. We’ll do dynamic tracking later.

In the next few steps, you’ll use cyberprobe to capture some data, on your workstation,
and stream it to etsi-rcvr so that you know it’s working. But first, you'll need to collect
some information about your configuration.

You need to know the name of the network interface you are using. The command
/sbin/ifconfig will show you all the network interfaces your machine knows about. e.g.

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10
[etc.]

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.1.80 netmask 255.255.255.0
inet6 fe80::a60:6eff:fe81:7a75 prefixlen 64
[etc.]

The lo interface is a loopback interface, and isn’t really on the network, so ignore that. It’s
an interface that gets packets going to 127.0.0.1 and makes sure they end up handled by
your workstation. Your interface is quite likely to be called something like ethO. The other
thing you need to know is the IP address of your workstation. The IP address is associated
with an interface, so in the above example, I can see I have an IP address 192.168.1.80.

Note: on some networks (like mine) the IP address is allocated dynamically. In my case,
the IP address is allocated by the broadband router. If things aren’t working as you expect,
you should check your IP address to check your workstation hasn’t been allocated a new,
different address. In my case, I can tell the broadband router to permanently allocate a
particular TP address to this workstation, so that it won’t change.

3.2 Using cyberprobe

Starting cyberprobe with a configuration file

The source code contains a file config. json which is a good template for any configuration
you’re going to build. However, for the purpose of this discussion, let’s start from scratch. In
order to do anything useful, there are three essential elements to a cyberprobe configuration
file: interfaces, targets and endpoints. The system won’t do anything useful without those
three configuration elements defined. Let’s start with a very simple configuration.

Using your favourite text editor, create a text file, say c.cfg with the following contents:

{

"interfaces": [
{ "interface": "ethO" }

Chapter 3: Quick start tutorial 11

Note: You should replace the ethO string with the name of your network interface. Re-
member? We discovered that when playing with the ifconfig command.

We’re ready to roll. We need to run as a privileged used because cyberprobe captures data
off the network interface. So, running as root, you need to locate the place where you
compiled the code, and run cyberprobe giving it the name of the configuration file you just
created:

cyberprobe c.cfg
If everything goes to plan, you should see the following output:

Capture on interface ethO started.
If you see an error message, the obvious two things to check are:

e Did you name a network interface correctly? See ifconfig discussion above.

e Are you running as a privileged user?

If you see no output at all, check that your configuration file is correct.

Once you are seeing the "Capture on interface ethO" line, then you’ve achieved success in
this step, and are ready to move on.

If you have everything working, there’s one thing to note before moving on: cyberprobe
treats a broken configuration file the same as an empty configuration file. With cyberprobe
running, edit the configuration file, and delete the query (‘?’) prefix in the first line, so that
it looks like this:

FIXME {

You’ve now broken the configuration file. It’s not valid JSON any more, so the parsing fails.
You should see this output from cyberprobe:

Capture on interface ethO stopped.

If you repair the damage to the configuration file, everything will start working again. The
lesson here is: If you find that cyberprobe won’t recognise any resources, it’s likely that
your configuration file is invalid. Use a JSON parser to check that the file is valid if you're
not getting the results you expect.

Adding a target

We have cyberprobe running, but it isn’t doing anything useful. Remember, I said that a
useful configuration consists of three minimal elements: interfaces, targets and endpoints?
Well, currently we only have interfaces defined. That means that cyberprobe is capturing
packets off of the network, but throwing them away.

Let’s add a target. Edit the targets block of the configuration file. We need an entry
describing the IP address of my workstation. Remember? We discovered that with the
ifconfig command earlier? Instead of 192.168.1.80 use the IP address of your workstation.

{
"interfaces": [
{ "interface": "ethO" }
1,
"targets": [
{

Chapter 3: Quick start tutorial 12

"address": "192.168.1.80",
"device": "123456"

}
If successful, you should see new output from cyberprobe:
Added target 192.168.1.80 -> 123456.

The target configuration allows specification of IPv4 and IPv6 addresses, and addresses can
include a mask, which allows IP address matching to be applied in a wildcard configuration.
See Section 9.2 [cyberprobe configuration], page 35,

At this step, we’re capturing packets, spotting target addresses, but as there’s no endpoint
defined there’s still nowhere to send the data. So, this is still a useless configuration. On
to the next step...

Adding an endpoint

Adding an endpoint to the configuration file will define a place where the captured data
is sent. Before adding an endpoint, let’s make sure there’s something ready to receive the
data.

In a separate terminal window, navigate to the cyberprobe build, and run:
etsi-rcvr 10000 | tcpdump -n -r -

The etsi-rcvr program opens a TCP port listening on port 10000 for a stream of ETSI
data, and on standard output, writes the IP packets it sees in PCAP format. The tcpdump
command receives this PCAP data, and outputs packet summaries.

If that starts successfully, the next step is to plumb a connection from cyberprobe to
etsi-rcvr.

Next, edit the configuration file, and edit the endpoints block to deliver packets to a local
service on port 10000:

{
"interfaces": [
{ "interface": "ethO" }
1,
"targets": [
{
"address": "192.168.1.80",
"device": "123456"
}
1,
"endpoints": [
{
"hostname": "localhost",
"port": 10000,
"transport": "tcp",

IItypell . ||etsill

Chapter 3: Quick start tutorial 13

}
If that worked, you should see cyberprobe start the endpoint:

Added endpoint localhost:10000 of type etsi

Hopefully you’ll start to see some output from tcpdump...

Capturing data

At this step, cyberprobe should be forwarding an network traffic your workstation generates
to the tcpdump command, so that you see data. Any average workstation is generating
network traffic all the time, so you won’t need to do anything. But if you see nothing, you
can do something like, visit the Google home page in a browser on your workstation. You
should see something like this pouring from the tcpdump.
18:54:24.376838 IP 192.168.1.80.54249 > 212.58.244.71.http: Flags [P.],
seq 1:673, ack 1, win 115, options [nop,nop,TS val 129851063 ecr 33669
55869], length 672
18:54:24.390768 IP 212.58.244.71.http > 192.168.1.80.54249: Flags (.1,
ack 673, win 124, options [nop,nop,TS val 3366955882 ecr 129851063], le
ngth O
18:54:24.392909 IP 212.58.244.71.http > 192.168.1.80.54249: Flags [P.],
seq 1:1796, ack 673, win 124, options [nop,nop,TS val 3366955884 ecr 1
20851063], length 1795

At this step, it’s worth having a quick play with the reconnection mechanism. Stop and
start etsi-rcvr, and you’ll see that cyberprobe reconnects automatically:

ETSI LI connection to localhost:10000 failed.
Will reconnect...
ETSI LI connection to localhost:10000 established.

We don’t guarantee zero data loss on a reconnect.

3.3 Management interface

At this step, we’ll setup a control port, and use it modify the configuration of cyberprobe.

First step is to modify the configuration file to include this line, just after the
<configuration> line:

{
"interfaces": [
{ "interface": "ethO" }
1,
"targets": [
{
"address": "192.168.1.80",
"device": "123456"
}
1,

"endpoints": [

{

Chapter 3: Quick start tutorial 14

"hostname": "localhost",
"port": 10000,
"transport": "tcp",
"type": "etsi"
}
1,
"controls": [
{
"port": 8888,
"username": "admin",
"password": "mypassword"
}
]

¥

That declares that a management service needs to be run on port 8888. The authentication
details are provided too. You should see this output from cyberprobe:

Starting control on port 8888

Good! Now need to connect and interrogate the targets list. The API is a simple text
protocol with requests and responses encoded in JSON. The cyberprobe-cli command
gives you an interactive CLI interface.

cyberprobe-cli localhost 8888
You are then prompted for a username and password:

$ cyberprobe-cli 1localhost 8888
Connected. You must authenticate.
User: admin

Password: s skkxkkskkxkxk

>

Press TAB to see command auto-completion.

> show endpoints

Hostname Port Type
localhost 9000 etsi
localhost 9001 etsi
localhost 9002 nhisl.1

> add target my-machine4 ipv6 fe80:5551:4024:8196:8175::/40 dark-net
> show targets

Device Class Address Mask
my-machine ipv4 0.0.0.0 /0
my-machine?2 ipv4 10.0.0.0 /8
my-machine4 ipv6 £e80:5551:4000:: /40
my-machine3d ipv6 £e80:4124:5696: : /48

> remove target my-machine4 ipv6 fe80:5551:4024:8196:8175::/40 dark-net
> add interface vxlan:8124 0.5 not port 9000
> show interfaces

Chapter 3: Quick start tutorial 15

Interface Delay Filter

vxlan:4789 0.5 not port 10001 and not port 10002
vxlan:4790 0.3

vxlan:8124 0.5 not port 9000

The interface isn’t pretty, but you get the idea. You can change almost everything that you
can manage by changing the configuration file.

Note: The the management interface changes the active state of cyberprobe but it doesn’t
change the configuration file. So, configuration changes made through the management
interface are ’lost’ when you restart cyberprobe.

Note also that you may get some weird results if you use the configuration file AND the
control interface to manage the same resources, so you probably don’t want to do that.

See Section 9.3 [cyberprobe-cli invocation|, page 37.

3.4 Integration with snort

In this step, we’ll add the excellent IDS, Snort to the mix. If you don’t know Snort, it
scans network traffic for patterns, and can take various actions when those patterns are
discovered. It is typically used to detect network attacks, and the Snort folks maintain
a huge collection of patterns that will identify known network attacks. The Snort team
maintain the project at http://www.snort.org.

If you want to try out the Snort integration, you need to head over to the Snort home page,
download and install Snort. Or install the appropriate package with your distribution.

Once you have it installed, to simplify things, you’ll want to put a rule in place that
will definitely identify things on your network. The easiest way is to add a local rule that
identifies your workstation. First of all, you’ll want to make sure your Snort configuration file
(probably /etc/snort/snort. conf) loads a local rules file. So, it should contain something
like this:

site specific rules

include $RULE_PATH/local.rules
Then, to identify your workstation, add a rule like this to your local rules file (probably
/etc/snort/rules/local.rules):

alert tcp 192.168.1.80 any -> any 80 (msg:"Web";

classtype:misc-activity;sid:200; rev:1;)
cyberprobe itself needs to be configured to receive Snort alerts. You do that by adding a
block to the configuration file at the top level:

{
"snort-alerters": [
{
"path": "/var/log/snort/snort_alert",
"duration": 60
}

http://www.snort.org

Chapter 3: Quick start tutorial 16

}

That says, Snort alerts will result in dynamic collection of data for 60 seconds from identi-
fication. While you’re in the configuration file, you can remove the static IP address target
line. Make sure the targets block is empty or removed from the configuration:

{

"targets": [],

cyberprobe should respond:

Removed target 192.168.1.80 -> 123456.
Start snort alerter on /var/log/snort/snort_alert

Now I can run Snort in IDS mode. Snort needs to run as 'root’:
snort -i ethO -A unsock -N -1 /var/log/snort/ -c /etc/snort/snort.conf

Thanks to our Snort rule, when our workstation generates network data, Snort will detect
it, trigger our rule, and alert cyberprobe. You should see cyberprobe say:

Hit on signature ID 200, targeting 192.168.1.80

Also, once the rule is triggered, you should see evidence of packet data from the tcpdump
command, as before. cyberprobe causes the targeting to time out after a period of time. If
further alerts are seen, the targeting lifetime is targeted. If no further alerts are seen the IP
address targeting is deleted. If you can convince your workstation to stop creating network
data, by e.g. not using it for a minute or so, then you should see the rule time out:

Stopped targeting on 192.168.1.80

In practice this may be harder than you think, as workstations generate network traffic all
the time. You may have to turn off your email clients and close the web browse. Your
attempt to silence your workstation may be further thwarted by the operating system
checking for patches without you knowing.

Introducing a delay

Your Snort integration suffers from a particular problem now. The time taken for Snort to
inspect some packets, generate an alert and for cyberprobe to get the IP address targeted is
not zero. It is hard to measure, but it is going to be a significant chunk of a millisecond. The
problem is that by the time cyberprobe is targeting the IP address, the network attcker’s
packets have long gone. The result is, that while cyberprobe is now targetting the attacker,
it won’t capture the original network attack.

Our solution is to introduce a packet delay in cyberprobe. The packets entering cyberprobe
are kept in a time-delay queue and are processed once that delay expires. You can configure
a delay, by putting the delay attribute in an interface specfication. e.g.

"interfaces": [
{ "interface": "eth0", "delay": 0.2 }

Chapter 3: Quick start tutorial 17

0.2 second should be plenty enough. You should be able to see this delay in action: When
you generate network traffic, you should be able to see the delay between network activity
taking place, and the corresponding burst of activity from tcpdump.

At this point, you’ve completed the guided tour of cyberprobe, the packet capture tool. If
that’s all you need, the rest of the tutorial will probably have less interest to you: In the
following steps, we’ll start to analyse and act on the captured data.

3.5 Using cybermon

Introducing cybermon

The previous 9 steps have all been about cyberprobe. If you’ve got this far successfully,
you pretty much know all there is to know about cyberprobe. It is time to start doing
something more useful with all that data you are capturing. In this step we’ll start up
cybermon and look at the data.

Remember that etsi-rcvr command you started in step [Adding an endpoint], page 127
Stop that, and start cybermon. Two arguments are needed: A TCP port number to receive
the data on, and a configuration which tells it what to do. A number of configuration files
are bundled in with the source code, there should be a basic one called monitor.1lua which
is now installed in the etc directory, depending on where you installed the software:

cybermon -p 10000 -c /usr/local/etc/cyberprobe/monitor.lua

Now when you generate network traffic, some of the traffic will be presented in a reasonably
intelligent form. For example, I do a naming service lookup for www.google. com...

host -t a www.slashdot.org

The DNS protocol is parsed, and presented in a human readable form. I can see the request,
and the response:

SNORTc0a80150: 192.168.1.80:54633 -> 192.168.1.1:53. DNS query
Query: www.slashdot.org

SNORTc0a80150: 192.168.1.1:53 -> 192.168.1.80:54633. DNS response
Query: www.slashdot.org
Answer: www.slashdot.org -> 216.34.181.48

I see the query travelling from my workstation to the broadband router, and then the
response from the broadband router contains an answer field mapping the name to an
address. HT'TP protocols are also decoded. Get the Slashdot home page...

wget -0- ’http://www.slashdot.org/’
...and amongst all the other stuff, you see the HT'TP request and response...
SNORTc0a80150: 192.168.1.80:34284 -> 216.34.181.45:80. HTTP GET request
URL /
Connection: Keep-Alive
User-Agent: Wget/1.14 (linux-gnu)
Host: slashdot.org
Accept: */x%

Chapter 3: Quick start tutorial 18

SNORTc0a80150: 216.34.181.45:80 -> 192.168.1.80:34284. HTTP response 200
0K

URL http://slashdot.org/

Connection: keep-alive

Content-Length: 113468

Date: Mon, 26 Aug 2013 13:13:25 GMT

Age: 17

X-Varnish: 1493567531 1493567417

X-XRDS-Location: http://slashdot.org/slashdot.xrds

Cache-Control: no-cache

Vary: Accept-Encoding

SLASH_LOG_DATA: shtml

Pragma: no-cache

Content-Type: text/html; charset=utf-8

Server: Apache/2.2.3 (Cent0S)

Trying other configuration files

In the previous step, you started cybermon with the monitor.lua configuration file.
Configuration file json.lua causes cybermon to output the events as JSON objects.
cybermon -p 10000 -c /usr/local/etc/cyberprobe/json.lua

The quiet.lua configuration file does nothing. It may be a good place to start hacking
your own configuration file. Which is exactly what we’ll do in the next step.

3.6 Writing your own configuration file

Now, take a copy of the quiet.lua configuration file, and have a look at it. It is a Lua
module which defines a minimum of one function, ‘event’, which is called when events
occur. LUA is a lightweight scripting langauge which is really good as a configuration
language. This function is called when a TCP connection is made:

observer.event = function(e)
end

Let’s get hacking! The header parameter is a LUA table which contains key/value pairs
from the header. The url parameter contains the full URL of the response. The body
parameter contains the payload body as an empty string. Let’s start simple:

observer.event = function(e)
if e.action == "http_response" then
print (url)
end
end

Then run that up...
cybermon -p 10000 -c my.lua

Now, do some web browsing, and you should see a list of URLs flying past. Each web
page typically consists of several HT'TP requests, but you should be able to see the URLs
associated with all of the web pages you visit. Let’s tart that up a little more:

Chapter 3: Quick start tutorial 19

—-- This function is called when an HTTP response is observed.
observer.event = function(e)

if e.action == "http_response" then

—- Take first 40 characters of URL
local u = url:sub(1,40)

-- Get Content-Type (first 20 characters)
local ct
ct = ""
for key, value in pairs(header) do
if key:lower() == "content-type" then
ct = value:sub(1,20)
end
end

io.write(string.format ("%-40s %-20s %d\n", u, ct, #body))
end

end

That basically outputs three columns: The URL (truncated to 40 characters), the body
content type (truncated to 20 characters) and the HTTP response payload length. Here’s
what I get from visiting Slashdot:

http://widget-cdn.rpxnow.com/manifest/sh text/javascript;char 42980
http://slashdot.org/ text/html; charset=u 40105
http://ad.doubleclick.net/adj/ostg.slash text/javascript; cha 5625
http://pagead2.googlesyndication.com/pag application/x-shockw 33347
http://ad.doubleclick.net/adj/ostg.slash text/javascript; cha 540
http://ad.doubleclick.net/adj/ostg.slash text/javascript; cha 42
http://ad.doubleclick.net/adj/ostg.slash text/javascript; cha 452
http://pagead2.googlesyndication.com/pag 0

Forging a TCP reset

So far, this has just been monitoring. It’s time to add data to the network! From the LUA
functions, there are a couple of functions available which allow you to put some packets
back onto the network.

But first... there’s a problem. You remember in step 9, we added a delay? That’s not going
to work with packet forgery, because by the time we’ve forged a packet and sent it on to
the network, it’s too late. So, we need to change our interface back so that there’s no delay
on the interface. That means, we’re monitoring network data, but we’ll miss the original
attack which triggered a Snort alert.

"interfaces": [

Chapter 3: Quick start tutorial 20

{ "interface": "eth0O", "delay": 0.0 }
1,

Once you have this code working, you might be able to mess with the delay parameter to
see if you can pick a low-latency value that works for you. On my network, the value 0.02 is
low enough to allow a response to allow packet forgery to work. Any higher, and the forged
packets are too late to beat the real packets.

The LUA interface passes a context variable to many of the LUA functions, which gives
access to cybermon information and the packet forgery functions. In this step, we’re going to
forge a TCP reset on any connections which are from or to port 80. Hack the configuration

file:

observer.event = function(e)
if e.action == "connected_up" then
-— Get TCP ports.
local cls, src_addr, dest_addr
cls, src_addr = e.context:get_src_addr()

cls, dest_addr = e.context:get_dest_addr()

-- check if it is port 80.

if not((src_addr == "80") or (dest_addr == "80")) then
-- Ignore non-HTTP traffic
return

end

—— TCP reset

print ("Reset on HTTP connection.")
e.context:forge_tcp_reset(context)

end

end

Now before we go any further, cybermon needs to run as root in order to use either of the
packet forgery functions. Packet forgery needs access to the raw IP socket layer, which is a
privileged operation. Start that up:

sudo cybermon -p 10000 -c my.lua

Now start web browsing, and you should see a bunch of "Reset on HTTP connection"
messages. Also, you’ll see a page saying "The connection was reset" in your web browser.
That’s a fairly anti-social configuration to run on any network. See the forge-reset.lua
example for a more useful configuration. It disrupts network traffic going to/from an SSH
server which isn’t from your administration workstation.

On any network with an SSH service open to the outside world, you might want to use
firewall rules to prevent access to the SSH service from addresses outside of your network,
but you could use cybermon as a belt-and-braces protection mechanism.

Chapter 3: Quick start tutorial 21

Another example is where you know the user community on your network is being targeted
by phishing emails. Your first step is to try to get the phishing emails out of their inboxes,
getting your email provider to filter the attacks. But a backup attack would be to make
sure your users can’t get to the phisher’s web site. The event function allows us to reset
requests going to a particular web site.

observer.event = function (e)
if e.action == "http_request" then

if e.header["Host"] == "example.org" then
print ("Reset on HTTP request")
context:forge_tcp_reset(context)

end

if e.header["Host"] == "www.example.org" then
print ("Reset on HTTP request")
context:forge_tcp_reset(context)

end

end

end

Forging a DNS response

In this step, we’ll detect a particular DNS request, and forge a response. First of all, you’ll
need to familiarise yourself with host which is a useful DNS test tool. e.g.

$ host -t a example.org
example.org has address 93.184.216.119

The example.org name has been resolved to a particular IP address. Let’s hack the DNS
request function in my.lua:

-- This function is called when a DNS message is observed.
local observer = {}

observer.event = function(e)
if e.action "= "dns_message" then

return

end

if e.header.qr == 0 and #e.queries == 1 and e.queries[1].name == "example.org"}
and e.queries[1].type == 1 and e.queries[1].class == 1 then

—-- Send a fake response

—-- Set query/response flag to ’response’
header = e.header

Chapter 3: Quick start tutorial 22

header.qr =1
header.ancount = 2

-- Two answers, give example.org 2 alternative IP addresses.
answers = {}

answers[1] = {3}

answers[1] .name = "example.org"
answers[1] .type = 1

answers[1] .class = 1

answers[1] .rdaddress = "1.2.3.4"
answers[2] = {}

answers[2] .name = "example.org"
answers[2] .type = 1

answers[2] .class = 1

answers[2] .rdaddress = "5.6.7.8"

-- Two answers
e.header.ancount = 2

io.write("Forging DNS response!\n")
e.context:forge_dns_response(header, e.queries, answers, {}, {})
end
end

—- Return the table
return observer

So, this example, checks that the query is one we want to mess with. If it is, we turn the
query structures into response structures, and hand them back to cybermon to do a forgery.
The above example forges the address 1.2.3.4. Start up cybermon with the script:

cybermon -p 10000 -c my.lua
If everything is working your host command will show a different result:

$ host -t a example.org
example.org has address 1.2.3.4

DNS forgery has applications in blocking access to a phishers resources on the internet, you
might want to redirect your users to an address which is inside your network.

The Section 9.9 [cybermon configuration], page 48, documentation details the LUA interface
in detail if you want to find out what else you can do in your LUA code.

3.7 Visualisation

Chapter 3: Quick start tutorial 23

Storing observations

Now we need somewhere to store the observations which cybermon discovers. There are
many candidates for a storage repository, but my favourite for this sort of scenario is the
excellent ElasticSearch (http://www.elasticsearch.org/). It is flexible, offers a huge
amount of functionality, and is incredibly simple to interface with, thanks to its JSON API.
So, your next action is to head over to the download page (http://www.elasticsearch.
org/download/) and get hold of the latest version. I'm using version 7.0 to build this
tutorial but the ElasticSearch API has proven hugely stable, so should work with the latest.

The easiest way to run ElasticSearch is as a Docker container, although you could download
and run the distribution.

docker run --name elasticsearch -p 9200:9200 \
elasticsearch:7.0

One brilliant thing about ElasticSearch is that it needs almost no configuration to get an
instance started. You will need to make one configuration change to ElasticSearch if there
are other instances running on your network: you need need to change cluster.name to
some unique string in config/elasticsearch.yml, otherwise your ElasticSearch instance
might join another cluster on your network, which could complicate things.

You can check you have ElasticSearch up and running using a command such as this:
wget -q -0- http://localhost:9200

The response will look something like this:

{
"name" : "gAbVXGZ",
"cluster_name" : "docker-cluster",
"cluster_uuid" : "TPZLBGYnTNqeO-LVLiF6yw",
"version" : {
"number" : "7.0.0",
"build_hash" : "bd92e7f",
"build_date" : "2017-12-17T20:23:25.338Z",
"build_snapshot" : false,
"lucene_version" : "7.1.0",
"minimum_wire_compatibility_version" : "5.6.0",
"minimum_index_compatibility_version" : "5.0.0"
3,
"tagline" : "You Know, for Search"
b

Once ElasticSearch is running, you can get cybermon to load observations into it. Before
we do that, need Pulsar to provide the pub/sub infrastructure:

docker run -it \
--name pubsub \
-p 6650:6650 \
-p 8080:8080 \
apachepulsar/pulsar:2.5.2 \
bin/pulsar standalone

http://www.elasticsearch.org/
http://www.elasticsearch.org/download/
http://www.elasticsearch.org/download/

Chapter 3: Quick start tutorial 24

Next we need to run two commands. Firstly, cybermon is run to output events on a Pulsar
pub/sub exchange.

cybermon -p 10000 -c /usr/local/etc/cyberprobe/pulsar.lua
While that’s running, we can start the ElasticSearch loader:
evs—-elasticsearch cyberprobe

After some network data has been observed, you should be able to see results loaded into
ElasticSearch using the following command:

es=localhost:9200
curl -s -XPOST \
"http://$es/cyberprobe/_search?pretty=true" -d ’
{
"query" : {
"match_all": {}
}
}

)

You should see some stuff which looks like data scrolling past on the screen. If your response
looks like the following result, that’s not so good, as it means there are no results. See
hits.total? Zero means no results.

{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : O
},
"hits" : {
"total" : O,
"max_score" : null,
"hits" : []
}
}

If you see a lot of information scrolling past on the screen, that’s good.

evs-elasticsearch maps the cybermon observations into a form which is appropriate to
store in ElasticSearch.

Visualising observations

Having loaded the observations into ElasticSearch, it’s easy to do some visualisation with
Kibana. Kibana is a brilliant, user-configurable dashboard package designed to sit on Elas-
ticSearch. The dashboard runs in your browser.

First thing to do is to run up a Kibana container. Kibana is made by the ElasticSearch
people, download page is at http://www.elasticsearch.co/downloads/kibana.

http://www.elasticsearch.co/downloads/kibana

Chapter 3: Quick start tutorial 25

Run a Kibana container:

docker run --name kibana \
-e ELASTICSEARCH_URL=http://elasticsearch:9200/ -p 5601:5601 \
--link elasticsearch:elasticsearch \
kibana:7.0

Kibana starts on port 5601, so point your browser at e.g. http://localhost:5601
and hopefully you see Kibana’s "Welcome to Kibana" screen.

Read the Kibana tutorial and start playing with the data. First thing you need to do is
create a cyberprobe index with the time field time. The go to the Visualize tab to see raw
data.

Once you have data loading into ElasticSearch, you may want to install our basic dash-
boards. These are installed at:

/usr/local/share/doc/cyberprobe/kibana-dashboards. json

3.8 Threat indicators

Cyberprobe includes a subscriber which apply indicators to events. When an event matches
an indicator, information about the indicator is tagged into the event.

Indicator support is present in the evs-detector subscriber which reads indicators from a

JSON file.

Indicator files

The installation bundle includes a a file containing some sample indicators, search for
indicators. json, which may be installed at /usr/local/share/doc/cyberprobe.

Deploying theat information to cybermon
To run using your existing processing pipeline, stop any running cybermon and
evs-elasticsearch processes. Then run cybermon to publish to a topic on Pulsar:
cybermon -p 10000 -c /usr/local/etc/cyberprobe/pulsar.lua
Next run cyberprobe-detector to apply indicator rules. By default, this will subscribe to
‘cyberprobe’ and publish to ‘ioc’
env INDICATORS=/path/to/indicators.json evs-detector \
cyberprobe ioc
Finally, in order to look at the output, we need to subscribe to ‘ioc’:
evs—-dump ioc
If you have jq installed, this will make it easier to see when indicators hit:
evs—-dump ioc | jq --unbuffered .indicators
This activity should trigger a theat:
wget -q -0- http://www.malware.org/malware.dat
If this works, you should see the following output:

L
{

http://localhost:5601

Chapter 3: Quick start tutorial 26

"description": "URL of a page serving malware",
"category": "malware",

"author": "someone@example.com",

"source": "id:3245edd9-e0£3-4982-9406-fbf93b874555",
Iltype" . ||ur11l s

"value": "http://malware.org/malware.dat"

}
]

This hits on a number of theat indicators. The hostname www.malware.com is present in
a theat indicator, and it is detected in the HTTP request, and both the DNS query and
response. Also, the URL http://www.malware.org/malware.dat is in a threat indicator
and it is detected in both the HT'TP request and response.

evs-detector updates its state if the JSON configuration file has changed.

If you want to load the output of evs-detector into ElasticSearch, you can, but you need
to subscribe to ‘ioc’:

evs—elasticsearch ioc
This results in indicator hit information being loaded into ES.

For more information on indicators, see Section 9.18 [evs-detector invocation|, page 79,
and Section 9.19 [Cyberprobe indicator format], page 79.

See https://github. com/cybermaggedon/threat-exchanges for code which creates
indicator sets from threat exchanges.

Conclusion

All done, I hope you enjoyed the tutorial! Any comments on the software, or tutorial itself
are very welcome! Positive, or negative, we want to hear how you found the experience.

https://github.com/cybermaggedon/threat-exchanges

27

4 Running cyberprobe/cybermon at boot time

The cyberprobe and cybermon utilities are used as a pair to analyse network data. The
cyberprobe component is used to capture data and forward to cybermon. When running on
a network, you can decide to run several cyberprobe deployments into a single cybermon.
Or run a cybermon process everywhere you run a cyberprobe.

Once you have decided your checklist, your setup checklist for using cyberprobe and
cybermon consists of:

e Install the software, see Chapter 2 [Obtaining the software], page 5.

e If you are going to run cyberprobe, provide the appropriate configuration in file
/usr/local/etc/cyberprobe.cfg. The standard installation will install a template
at this location. See Section 9.2 [cyberprobe configuration], page 35, on managing this
configuration file. Make sure that the configuration file includes the delivery address
of the appropriate cybermon.

e If you are going to run cybermon, provide the appropriate configuration in file
/usr/local/etc/cyberprobe/cybermon.lua.

The standard installation does not create a file at this location, and you should create
one. You can copy an example from the /usr/local/etc/cyberprobe directory. Use
/usr/local/etc/cyberprobe/amgp-topic.lua if you want to use pub/sub delivery.
See Section 9.9 [cybermon configuration], page 48, for more information on constructing
the configuration file. See Section 9.10 [cybermon example configurations|, page 64, for
descriptions of the example configuration files.

e The installation installs appropriate systemd configuration, and you can enable boot-
time starting of cyberprobe or cybermon by using either or both of these commands:
systemctl enable cyberprobe
systemctl enable cybermon

Once enabled, you can reboot, or immediately start the processes using either or both
of these commands:

systemctl start cyberprobe
systemctl start cybermon

28

5 The pub/sub infrastructure

5.1 Pub/sub overview

Events from cybermon can be delivered to a pub/sub mechanism which allows subscribers
to connect and disconnect without disrupting delivery to other subscribers. The pub/sub
mechanism used is Pulsar, which is a simple high-performance, distributed exchange.

In order to use this mechanism, you need to ensure you have configured cybermon ap-
propriately. This is normally done by using the pulsar.lua configuration file. Copy to
cybermon.lua in directory /usr/local/etc/cyberprobe/ to use this by default with stan-
dard system startup of cybermon. Alternatively, cybermon can be manually invoked, spec-
ifying the pulsar.lua pathname on the command line.

Once running, cybermon will publish all events to Pulsar’s ‘cyberprobe’ topic.

Pulsar allows subscribers to be started and stopped without affecting the delivery of events
to other receivers. That is, you can start cybermon with no subscribers, discarding data,
and introduce subscribers later.

For more advanced processing scenarios, multiple pub/sub components can be chained. e.g.
e cybermon can be executed with pulsar to publish events to Pulsar topic ‘cyberprobe’.

e evs-geoip can subscribe to ‘cyberprobe’, and push events containing information to

‘geo’.

e ecvs-detector can do lookup for IOCs and push events with IOC detection information
to ‘ioc’.

e cvs-elasticsearch can subscribe to ‘ioc’ and write events to ElasticSearch.

5.2 The Cassandra subscriber
Note: The Cassandra subscriber doesn’t do much useful. I recommend skipping
this bit.

This subscriber writes data to a Cassandra store in a schema useful for graph analysis.

The schema is experimental, but see https: / / github . com / cybermaggedon /
cassandra-redland for the tooling I'm using.

On the command-line you need to tell the subscriber the location of the Cassandra contact
points e.g.

evs—-cassandra ioc casl,cas2,cas3

See Section 9.16 [evs-cassandra invocation], page 78.

5.3 The ElasticSearch subscriber

This suscriber extracts events from pub/sub and formats them for delivery to ElasticSearch.
The only piece of information you need is the ElasticSearch base URI, which is used as a
command-line parameter e.g.

evs-elasticsearch ioc http://es-host1:9200

See Section 9.14 [evs-elasticsearch invocation|, page 78.

https://github.com/cybermaggedon/cassandra-redland
https://github.com/cybermaggedon/cassandra-redland

Chapter 5: The pub/sub infrastructure 29

5.4 The Gaffer subscriber

About Gaffer

Gaffer is a graph database built on top of Accumulo, Zookeeper and Hadoop. This sub-
scriber writes IP, TCP and UDP communication information into the graph. If you want
to use this, get familiar with Gaffer. Gaffer development is hosted on Github at https://
github.com/gchg/Gaffer, and I maintain Gaffer containers here

https://hub.docker.com/r/cybermaggedon/wildfly-gaffer/
Gaffer component, provides REST interface running in a Wildfly container.

https://hub.docker.com/r/cybermaggedon/accumulo-gaffer/
Accumulo component, with added Gaffer operator library which is necessary to
be able to use Gaffer on Accumulo.

https://hub.docker.com/r/cybermaggedon/zookeeper/
Zookeeper container, which is required by Accumulo.

https://hub.docker.com/r/cybermaggedon/hadooop/
Hadoop container, which is required by Accumulo.

Running Gaffer

To get started, you can run a Gaffer system by launching with the minimal set of containers:

GAFFER_VERSION=1.1.2

Run Hadoop
docker run -d --name hadoop cybermaggedon/hadoop:2.8.1

Run Zookeeper
docker run -d --name zookeeper \
cybermaggedon/zookeeper:3.4.10b

Run Accumulo

docker run -d --name accumulo --link zookeeper:zookeeper \
--1ink hadoop:hadoop \
cybermaggedon/accumulo-gaffer: ${GAFFER_VERSION}

Run Wildfly, exposing port 8080.

docker run -d --name wildfly --link zookeeper:zookeeper \
--1link hadoop:hadoop --link accumulo:accumulo \
-p 8080:8080 \
cybermaggedon/wildfly-gaffer: ${GAFFER_VERSION}

The Gaffer/Wildfly component takes about 30 seconds to bed in. Once working, you can
check the status of Gaffer by interacting with the REST API. This command should return
the Graph schema, which is a JSON object:

wget -q -0- http://localhost:8080/rest/v1/graph/schema

https://github.com/gchq/Gaffer
https://github.com/gchq/Gaffer
https://hub.docker.com/r/cybermaggedon/wildfly-gaffer/
https://hub.docker.com/r/cybermaggedon/accumulo-gaffer/
https://hub.docker.com/r/cybermaggedon/zookeeper/
https://hub.docker.com/r/cybermaggedon/hadooop/

Chapter 5: The pub/sub infrastructure 30

You can fetch the entire graph using this command. Initially, the graph will be empty. This
command may take a long while to run once the graph is loaded with loads of data:
wget -q -0- --header ’Content-Type: application/json’ \
--post-data ’
{"class": "uk.gov.gchq.gaffer.operation.impl.get.GetAl1Elements"}
> http://localhost:8080/rest/v2/graph/operations/execute

Linking to cybermon

On the command-line you need to tell the subscriber the location of the Gaffer REST API.
e.g.
evs-gaffer ioc \
http://localhost:8080/rest/vl

See Section 9.15 [evs-gaffer invocation], page 78.

5.5 The debug monitor subscriber

The evs-monitor subscriber is a subscriber which takes events and writes human-readable
output on standard output. This is a useful means to verify that cyberprobe, cybermon
and pub/sub are configured correctly.

See Section 9.13 [evs-monitor invocation|, page 77.

31

6 A containerised processing system

Cybermon, Gaffer, ElasticSearch
The cybermon, subscriber components and data stores can easily be deployed in containers
to form a scalable processing system.

To illustrate this in use, we distrubute a Docker Compose configuration which can be used
to start:

e A cybermon, listening on port 9000.
e A evs-geoip container, adding GeolP information to events.

e A evs-detector container, adding IOC information to events from a sample STIX
data set.

e A evs-elasticsearch container, to load information into ElasticSearch.
e A evs-gaffer container, to load information into Gaffer.

e An elasticsearch container to store events.

e A kibana container to store events.

e A Gaffer cluster consisting of Hadoop, Zookeeper, Accumulo and Gaffer containers.

You can see the Docker Compose configuration at the path:
/usr/local/share/doc/cyberprobe/docker-compose.yml
In order to invoke this run:

cd /usr/local/share/doc/cyberprobe/
docker-compose up
No data is stored persistently - you can change how this works by changing the
docker-compose.yml file. It takes about a minute to settle down, at which point, you
need to generate data using cyberprobe and send to port 9000.
You can connect to the Kibana instance on port 5601. The first thing you will need to do is
to go to the Management > Index Patterns dialogue, and create an index pattern for index
‘cyberprobe’, with time specified in the ‘time’ field.
You may want to install our data dashboards, using Management > Saved Objects and press
the Import button. The dashboard file is installed at:
/usr/local/share/doc/cyberprobe/kibana-dashboards. json
ElasticSearch bails out unless ‘vm.max_map_count’ setting is right. If you have problems,
try:

sudo sysctl vm.max_map_count=512000

Snort, Cyberprobe, Cybermon, Gaffer, ElasticSearch

There is a second configuration which adds Snort and Cyberprobe to the deployment. This
accesses the host network interface by providing host network access to the cyberprobe
and snort containers. The network interface name is specified in the cyberprobe.cfg file
for cyberprobe and the docker-compose-cp-snort.yml file for snort so you will need to
edit accordingly.

cd /usr/local/share/doc/cyberprobe/

32

docker-compose \
-f /usr/local/share/doc/cyberprobe/docker-compose-cp-snort.yml up

The configuration results in trigger packet acquisition as soon as any port 80 or port 11111
data is observed. e.g.

wget -q -0- http://www.example.org/

33

7 Integrating with AWS Traffic Mirroring

Overview

AWS allows you to mirror network traversing a network interface (ENI) to another ENI,
essentially providing the equivalent of an Ethernet tap in a data centre. Traffic Mirroring
allows you to select network interfaces or NLBs for traffic mirroring. Filters can be applied
to select the subset of traffic which will be mirrored, and a target interface allows you to
specify an ENI or load-balancer to receive the data. Data is delivered in VXLAN format,
essentially, Ethernet frames wrapped in an 8-byte header. These frames are delivered over
UDP to port 4789.

Cyberprobe implementation
Cyberprobe provides two ways to integrate with AWS Traffic Mirroring:

e cyberprobe implements VXLAN reception. If an interface is defined whose name has
a vxlan:PORT form, then a VXLAN receiver is started on the specified UDP port
number. For AWS traffic mirroring, delivery is on port 4789, so the interface name
vxlan:4789 would be used.

e cybermon implements VXLAN reception with the -V option allowing a port to be

specified. Events produced form a VXLAN feed have the device ID set to the string
‘VNI’ plus the VNI identifier in decimal.

Using VXLAN support in cyberprobe provides more flexibility, as this allows delay line
and filter commands to be used. Also, IP addresses can be mapped to device IDs.

Using VXLAN support in cybermon means that cyberprobe does not need to be used, and
provides for a simpler architecture.

34

8 Endace DAG

cyberprobe includes support for Endace DAG. This is presently not distributed. If you
compile cyberprobe on a host which has the DAG library (1ibdag) installed, it will be
detected at the configure step.

If DAG support is compiled in, then the DAG devices can be referenced in the
cyberprobe. cfg file using the prefix ‘dag’ plus the card number e.g.

"interfaces": [

{ "interface": "dagO" }

To use DAG devices, you need to load DAG firmware, and set all appropriate card options
using dagload and dagconfig prior to starting cyberprobe.

9 Reference

9.1 cyberprobe invocation

35

cyberprobe is a network monitor which collects packets which match an I[P address list. The
packets collected are streamed using network streaming protocols. The IP address match
list can be statically congfigured (in a configuration file), can be dynamically changed using
a management interface, or can be dynamically changed as a result of snort alerts. Synopsis

cyberprobe configuration-file

e configuration-file is the name of a JSON configuration file. See Section 9.2 [cyberprobe
configuration], page 35.

cyberprobe executes indefinitely - to end the program, a signal should be sent. e.g.

killall cyberprobe

9.2 cyberprobe configuration

The configuration file is re-read when it changes, and changes are immediately actioned.

Sample configuration:

port 10002",

"sam-iphone" 1},
"fred-android" 7},
"lisa-mac" },
"suzie-mac" },
"suzie-android" },
"suzie-iphone" },
"imogen-pc" },
"imogen-pc" },
"imogen-pc" },
"imogen-ipad" 1},
"imogen-android" },
"imogen-android" I},
"will-tablet" 1},

{
"interfaces": [
{
"interface": "ethO",
"filter": "mot port 10001 and not
"delay": 0.5
1,
{
"interface": "ethl"
}
1,
"targets": [
{ "address": "192.168.1.1", "device":
{ "address": "192.168.1.2", "device":
{ "address": "10.2.0.0/16", "device":
{ "address": "10.1.1.0", "device":
{ "address": "10.1.1.2", "device":
{ "address": "10.1.1.3", "device":
{ "address": "10.1.1.4", "device":
{ "address": "10.1.1.5", "device":
{ "address": "10.1.1.6", "device":
{ "address": "10.1.1.7", "device":
{ "address": "10.1.1.8", "device":
{ "address": "10.1.1.9", "device":
{ "address": "10.1.1.10", "device":
{ "address": "aaaa:bbbb:cccc:dddd::4:5:6",

"device": "sam-pc" },

"class": "ipv6",

Chapter 9: Reference 36

{ "address": "aaaa:bbbb:cccc::/48", class: "ipv6",
"device": "sam-pc" }
1,
"endpoints": [
{
"hostname": "monitorl",
"port": 10001,
"type": "nhisl.1"
},
{
"hostname": "monitor2",
"port": 10002,
|Itypell : “etSi"
}
1,

"parameters": {
"country": "DE",
"operator": "Cyber",
"network_element": "10.8.2.4",
"interception_point": "abcd1234",

"username.123456": "user(Ol@example.org",
"username.123981": "userO2@example.org",
"username.981235": "userO3Q@example.org",

"snort.1.1iid": "SNORT1",
"snort.2.1iid": "SNORT2"

3,
"snort-alerters": [
{
"duration": 30,
"path": "/tmp/alert"
}
]

}

The control element is optional, if it exists, cyberprobe runs a management interface on
the specified port. The port, username and password attributes must be specified. See
Section 3.3 [Management interface], page 13, for how to communicate with that interface.

The interfaces block defines a set of interfaces to sniff. The name attribute is mandatory,
the filter element is optional, and if specified should describe a BPF (Berkley Packet
Filter) expression. The delay element can be used to specify, in seconds, the duration to
wait before packets are processed. The delay is specified as a floating point decimal. If the
interface name is of the form vxlan:PORT then a VXLAN receiver is run in the specified
port number for reception of e.g. AWS Traffic Mirroring.

The targets block defines IP address to match. The address attribute defines the IP
address with optional mask used for the address match. If a mask is specified, this describes
the subset of the address which will be used for matching. For instance, if 192.168.0.0/16

Chapter 9: Reference 37

is specified, then a 16-bit mask will be applied, which makes this a class-B address match.
That is, any address in the 192.168.0.0-192.168.255.255 range will match. If no mask is
specified, then this is an exact match against a single address. The device attribute defines
the deivce ID which will be applied if this particular IP address is detected.

The optional network attribute defines the network (ETSI NetworkElementID), which, if
specified, will be transmitted in the ETSI stream, and delivered as the JSON ‘network’
element in cybermon output. The address must be an IP address, and not a hostname. The
address can be an IPv6 address if the class attribute is included, and set to ipvé.

Device IDs can occur in multiple places in the target block, allowing multiple IP addresses
to match to the same device ID, but the same IP address/mask specifier should only occur
once in the target block.

If subnetwork ranges overlap, the longest prefix match applies.

The device and network can contain template constructs:

AR This is replaced with the IP address which causes a match.

‘hs’ This is replaced with the IP address in the target rule - useful if this is a
subnetwork address.

“%m’ This is replaced with the source MAC address in the header of the packet which
causes a match.

v’ This is replaced with the VLAN ID in the header of the packet which causes a
match.

AN This is replaced with a literal %.

The endpoints block defines a set of addresses for delivery. The hostname and port
attributes should be used to describe the endpoint address. Type type attribute should be
nhisl.1 or etsi to specify which output stream format to use. The transport describe
the transport type, which should be tcp for standard TCP stream, or tls for an SSL/TLS
stream. If TLS is invoked, the attributes certificate, key and trusted-ca should be
specified, with filenames for client certificate, private key, and a trust CA chain. These
should all be in PEM format.

The optional parameters block defines a set of parameters which are only used in ETSI
delivery. Each parameter element should have a key and a value attribute. The parameter
values for country, operator, network_element and interception_point describe values
which are used in the PSHeader and IRI constructs. The parameters with prefix username.
describe values for the username values in the IPIRI construct in ETSI LI. The key value
is the literal username. suffixed with the device ID. If such an entry is present, it is used
for the username. All parameters are optional, meaningless defaults (e.g. unknown) will be
used if not specified. The etsi-streams parameter specifies the number of TCP streams
which will be opened for delivery, the default being 12. This feature potentially increases
throughput, and is useful if the destination is a load-balanced resource.

9.3 cyberprobe-cli invocation

cyberprobe-cli connects to cyberprobe on the management port to allow dynamic ad-
ministration. This permits dynamic management of resources.

Chapter 9: Reference 38

Note: You can end up in a confusing situation if you use both the configuration
file, and the management interface to configure resources. It is best to use one
or the other. You can safely use the configuration file for resources that you
don’t intend to change through the management interface, but you shouldn’t
use both the configuration file and management interface to change the same
resources.

Synopsis:
cyberprobe-cli HOST PORT
Example:
cyberprobe-cli vpn-host031 8888
‘HOST’ Specifies the hostname or IP address of the host to connect to.

‘PORT’ Specifies the management port number.

Upon connection, you are prompted to enter a username and password. Upon successful
authentication, you are then offered a command line prompt for administration commands.

9.4 cyberprobe-cli commands
The following commands are supported by cyberprobe-cli:

‘add endpoint HOST PORT TYPE [TRANSPORT [KEY CERT CAJ]]’
Adds a delivery endpoint.

‘HOST’ Specifies the delivery host.

‘PORT’ Specifies TCP port to deliver to.

‘TYPE’ Can be one of ‘nhis’ or ‘etsi’ for delivery protocol.

‘TRANSPORT’
Can be one of ‘tcp’ or ‘tls’ for TCP or TLS transports. Defaults
to ‘tcp’.

‘KEY’ Filename of a key file in PEM format if ‘t1s’ is specified.

‘CERT’ Filename of an X.509 file in PEM format if ‘t1s’ is specified.

‘TRANSPORT’

Filename of trusted CA certs in PEM format if ‘t1s’ is specified.

Note: It is not possible to specify the appropriate transport paramters for TLS
delivery using the management interface currently.

‘add interface INTERFACE [DELAY [FILTER]]’
Adds an interface for packet sniffing.

‘INTERFACE’
Interface name.

‘DELAY’ Delay between packet acquisiton and delivery. Defaults to zero.

‘FILTER’ Optional, species a filter to be applied for positive selection of pack-
ets, in BPF / libpcap format.

Chapter 9: Reference 39

‘add parameter KEY VALUE’
Adds a parameter.

‘KEY’ Parameter key.
‘VALUE’ Parameter value.

‘add target DEVICE PROTOCOL ADDRESS’
Adds an address target for packet capture.

‘DEVICE’ Device identifier.

‘PROTOCOL’
Address protocol, one of ‘ipv4’ or ‘ipvé6’.

‘ADDRESS’ Address value, in IPv4 or IPv6 format, according to the PROTO-
COL value. Optionally can have a ‘/mask’ suffic.

‘quit’ Causes the client to close the connection and terminate.

‘remove endpoint HOST PORT TYPE [TRANSPORT [KEY CERT CHAIN]]’
Removes an endpoint added through the ‘add endpoint’ command. The HOST,
PORT TYPE and TRANSPORT, ... values are the same as for ‘add endpoint’.

‘remove interface INTERFACE [DELAY [FILTER]]’
Removes an interface added through the ‘add interface’ command. The IN-
TERFACE, DELAY and FILTER values are the same as for ‘add interface’.

‘remove paramter KEY VALUE’
Removes a paramter added through the ‘add parameter’ command. The KEY
and VALUE values are the same as for ‘remove parameter’.

‘remove target DEVICE PROTOCOL ADDRESS’
Removes a target added through the ‘remove target’ command. The PRO-
TOCOL and ADDRESS values are the same as for ‘add target’.

‘show endpoints’
Displays a table showing endpoints.

‘show interfaces’
Displays a table showing interfaces.

‘show parameters’
Displays a table showing parameters.

‘show targets’
Displays a table showing targets.

9.5 eventstream-service invocation

eventstream-service is a demonstrator gRPC service for cyberprobe gRPC. It isn’t par-
ticularly useful for anything other than demo/debugging/diagnosing gRPC problems.

It receives gRPC requests containing event data, and outputs these in a JSON form, one
event per line. This is a default mapping for Protobuf data determined by the Protobuf
libraries, and is not identical to Cyberprobe JSON format.

Chapter 9: Reference 40

The eventstream-service.C code may be useful in building your own gRPC service.
Synopsis:

eventstream-service [HOST:PORT]
Example:

eventstream-service 0.0.0.0:9100

‘HOST’ Specifies the hostname or IP address to bind this service to, to receive requests.
0.0.0.0 means any address.

‘PORT’ Specifies the port number to listen on.

9.6 Output streaming protocols

cyberprobe supports packet output in one of two output formats, which are both LI for-
mats. LI formats were chosen as they set good, open standards for streaming packets to a
destination. There are also existing security products such as firewalls, and analysis tools
which understand with these protocols. The two formats are ETSI LI and NHIS 1.1.

ETSI LI

The first of the formats supported is the ETSI LI format (see ETSI TS 102 232), which is
used in Europe and internationally. The protocol is described using an ASN.1 specification
which can be downloaded from the ETSI web-site. Google can find the standards. The over-
arching TS 102 232-1 standard describes the transport, while the TS 102 232-3 standard
describes putting the IP packets in the transport.

Those adverse to the use of ASN.1 technology may prefer the second format.

NHIS LI

NHIS 1.1 which was defined for use in the UK in the 90s, based on GLIC in ETSI TS 101
671. The protocol is a much simpler header protocol than ETSI LI, and needs less work to
decode.

The standard was available on the internet on the http://gliif.org website, but that
web-site has recently gone offline.

The bluffers guide to decoding goes...

e The first 32 bytes after TCP connection are a header. Ignore the first 4 bytes, the
latter 28 bytes are the LIID / device ID, represented as an ASCII string. Unused bytes
following the LIID / device ID are set to zero to pad out to 32 bytes.

e Once the start header is sent, the following data consists of IP packets pre-fixed by a
20 byte header. The only information of note in each 20 byte header is a 2-byte length
field at offset 2 (network byte order). This tells you the length of the IP packet.

e The IP packets are transmitted until the TCP connection closes. A separate TCP
connection is used for each LIID / device ID.

http://gliif.org

Chapter 9: Reference 41

Output semantics

cyberprobe automatically reconnects to failed destinations, but the buffering strategy is
very simple. When destinations fail, the packets are buffered in a small queue, but there
is limited buffering, so once the queue fills, packets will start to be dropped. The locking
strategy is simple, so loss of a single endpoint will currently result in data loss to all
endpoints. This may be a problem for operational scenarios where high data availability is
required.

cyberprobe includes some code to decode the ETSI and NHIS streams, and also includes
two test utilities, etsi-rcvr and nhisli-rcvr which listen on a specified port number,
decode the stream data, and forward in PCAP format on standard output. Example usage
would be:

etsi-rcvr 10001 | tcpdump -n -r-
nhisil-rcvr 10000 | tcpdump -n -r-

9.7 Management protocol

Overview

The management interface is a simple interface which supports studying and dynamically
changing the cyberprobe configuration: endpoints, targets and interfaces.

The configuration file specifies a port number, and username and password for the interface.
The interface is intended to be used programmatically. It is a request/response interface.

Note that the protocol is in clear, so should not be used across a hostile network.

Request structure

Each request is a JSON object encoded on a single line terminated with ‘NEWLINE'. Each
request is required to have an action field which describes the action to take. One action
is special: auth; other actions cannot be used until authentication has taken place.

Example request:

{"action":"auth","password":"admin","username":"horse-battery-staple"}

Response structure

Each response is preceded by a base-10 encoded human-readable byte length terminated
by ‘NEWLINE’ after which the response is sent. Response is a JSON payload. The status
field contains a numeric response code, statuses in the range 200-299 indicate success. The
message field contains a human-readable response string, which will be an error message in
the error case.

Other fields depend on the request.

Actions
Here is the list of supported actions. JSON has been pretty-printed to aid understanding.

Chapter 9: Reference 42

The following values of the action field are supported:

auth Must be accompanied by valid username and password fields in order to au-
thenticate. The response contains status and message fields.

Example request:

{
"action":"auth",
"password":"admin",
"username" :"horse-battery-staple"
}

Example response:
{"message":"Authenticated.","status":200}
add-interface

Starts packet capture from an interface. Request should have an interface field
containing an interface specification.

Example request:

{
"action": "add-interface",
"interface": {
"delay": 0.5,
"filter": "not port 9876",
"interface": "vxlan:9876"
}
}

Example response:
{"message":"Interface added.","status":200%}
remove-interface
Removes a previously enabled packet capture.

Example request:

{
"action": "remove-interface",
"interface": {
"delay": 0.5,
"filter": "mnot port 9876",
"interface": "vxlan:9876"
}
}

Example response:
{"message":"Interface removed.","status":200}
get-interfaces
Lists all interfaces, output is format iface:delay:filter.

Example request:

{

Chapter 9: Reference

"action": "get-interfaces"
}
Example response:
{
"interfaces": [
{
"delay": 0.5,
"filter": "not port 10001 and not port 10002",
"interface": "vxlan:4789"
},
{
"delay": 0.3
"filter": "",
"interface": "vxlan:4790"
},
{
"delay": 0.5,
"filter": "not port 9876",
"interface": "vxlan:9876"
}
1,
"message": "Interfaces list.",
"status": 201
}

add-endpoint
Adds an endpoint to delivery data to.
Example request:

{
"action": "add-endpoint",
"endpoint": {
"certificate": "cert.crt",
"hostname": "receiver",
Ilkeyll . Ilkey.pemll s
"port": 10000,
"transport": "tls",
"trusted-ca": "ca.crt",
"type": "etsi"
}
}

Example response:
{"message":"Endpoint added.","status":200}
remove—endpoint
Removes a previously enabled endpoint.
Example request:

{

43

Chapter 9: Reference

"action": "remove-endpoint",
"endpoint": {
"certificate": "cert.crt",
"hostname": "receiver",
Ilkeyll . Ilkey.pemll s
"port": 10000,
"transport": "tls",
"trusted-ca": "ca.crt",
"type": "etsi"

}
}

Example response:
{"message" :"Endpoint removed.","status":200}
get-endpoints
Gets the endpoint list.
Example request:
{"action":"get-endpoints"}

Example response:

{
"endpoints": [
{
"hostname": "localhost",
"port": 9000,
"transport": "tcp",
"type": "etsi"
3,
{
"hostname": "localhost",
"port": 9002,
"transport": "tcp",
"type": "mnhisl.1"
3,
{
"certificate": "cert.crt",
"hostname": "receiver",
"key": "key.pem",
"port": 10000,
"transport": "tls",
"trusted-ca": "ca.crt",
"type": "etsi"
b
1,
"message": "Endpoints list.",

"status": 201

Chapter 9: Reference

add-target
Adds a new targeted IP address.

Example requests:

{
"action": "add-target",
"target": {
"address": "1.2.3.0/24",
"class": "ipv4",
"device": "my-machine4",
"network": "my-network"
b
"action": "add-target",
"target": {
"address": "fe80:e015:e897::/24",
"class": "ipv6",
"device": "my-machine4d",
"network": ""
X
+

Example response:

{"message":"Target added.","status":200}

remove-target
Removes a previously targeted IP address.

Example requests:

{

"action": "remove-target",

"target": {
"address": "1.2.3.0/24",
"class": "ipv4",
"device": "my-machine4",
"network": "my-network"

}

"action": "remove-target",

"target": {
"address": "fe80:e015:e897::/24",
"class": "ipv6",
"device": "my-machine4",
"network": ""

b

45

Chapter 9: Reference

Example response:
{"message":"Target removed.","status":200}
get-targets
Lists targets
Example request:
{"action":"get-targets"}

Example response:

{
"message": "Target list.",
"status": 201,
"targets": [
{
"address": "10.0.0.0/8",
"class": "ipv4",
"device": "my-machine2",
"network": ""
1,
{
"address": "1.2.3.0/24",
"class": "ipv4",
"device": "my-machine4d",
"network": "my-network"
3,
{
"address": "fe80:4124:5696::/48",
"class": "ipv6",
"device": "my-machine3",
"network": ""
}
]
}

add-parameter
Adds a new parameter, or changes a parameter value.

Example request:

{
"action": "add-parameter",
"parameter": {
"key": "key",
"value": "value"
X
}

Example response:

{"message" :"Parameter added.","status":200}

Chapter 9: Reference 47

remove-parameter
Removes a parameter value.

Example request:

{
"action": "remove-parameter",
"parameter": {
"key": "key",
"value": "value"
b
+

Example response:
{"message" :"Parameter removed.","status":200}
get-parameters
Lists parameters.
Example request:

{"action":"get-parameters"}

{
"message": "Parameters list.",
"parameters": [
{
llkey" : ||asdll s
"value": "def"
3,
{
"key": "bunchy",
"value": "loss"
3,
{
"key": "key",
"value": "value"
}
1,
"status": 201
3

Status codes

Error codes always start with 3 or 5. A 3xx error code results from something which is
your fault e.g. procedural or syntactic violation, 5xx error codes result from errors internal
to the system. This is still probably your fault :) e.g. specifying an interface which doesn’t
exist.

A 2xx means you didn’t do anything wrong, and the command worked.

Chapter 9: Reference 48

9.8 cybermon invocation

cybermon is a configurable network packet stream analyser. It is designed to receive packets
from cyberprobe, analyse them and generate session/transport level events which result in
user-configurable actions. For each event, a call is made to a Lua script which the caller
provides. Synposes:
cybermon [--help] [--transport TRANSPORT] [--port PORT] [--key KEY]
[--certificate CERT] [--trusted-ca CHAIN] [--pcap PCAP-FILE]
[--config CONFIG] [--vxlan VXLAN-PORT] [--interface IFACE]
[--device DEVICE] [--time-limit LIMIT]
e TRANSPORT is either ‘tcp’ or ‘t1ls’. If ‘t1ls’ is specified, ‘cybermon’ expects to read
data over TLS. In TLS mode, it is necessary to specify the key, certificate, and trusted
CA files.

e PORT is a TCP port number. This form of the command runs as a TCP server
listening for ETSI LI streams. See [ETSI LI|, page 40.

e KFEY specifies a filename for the private key in PEM format. Only used in TLS mode.
e CERT specifies a filename for the public certificate in PEM format. Only used in TLS

mode.

e CHAIN specifies a filename for trusted CA keys in PEM format. Only used in TLS
mode.

e PCAP-FILE is a PCAP file to read. This form of the command reads the PCAP file,
and then exits. If the file is ‘-’, standard input is read.

e CONFIG is a Lua configuration file, which specifies the action cybermon should take
when certain events are observed. See Section 9.9 [cybermon configuration|, page 48.

e VXLAN-PORT is a UDP port number. This describes a port number to listen on for
VXLAN protocol. This scenario is used to receive traffic-mirrored data on AWS.

e [FACE is a network interface to sniff for packets as input.

e DEVICE is a device-name to include in the output events. Use this to specify the device
for PCAP files, interfaces or VXLAN input if you don’t want the default placeholder.

e LIMIT is the length of time to run for (in seconds). The program exits after this
period.

9.9 cybermon configuration

Overview

Cybermon is a simple monitoring tool. It receives the ETSI protocol, decodes the protocols,
and makes decoded information available for further handling which you can specify. The
tool is very much a work in progress - it has limited protocol decode capability at the
moment, but there’s enough there to demonstrate the idea. Usage

Usage is: cybermon -p <port-number> -c <config-file>

You specify a port number to receive data on, and a configuration file written in Lua. Lua
is a simple but powerful scripting language. Here’s an example to help you see how the
configuration is used.

Chapter 9: Reference 49

Example configuration

The configuration file is there to provide functions which get called when certain events
occur. The calling interface is fairly simple at the moment, and over time, expect to see a
richer interface develop.

To start with, we create the structure of the configuration file. Call it something with a
.lua extension e.g. config.lua so that your editor knows how to indent the code. The
basic structure is a module with a number of functions:

local observer = {}

-— Called when an event occurs

observer.event = function(e)
print(e.action)

end

—— Return the table
return observer

LUA event calls

The configuration file is expected to provide the event function which is called with a single
argument, an event, in response to cybermon events. The event looks like a table, but is a
userdata object. While the object has fields which can be read, they cannot be changed in
the event object itself.

There are standard fields in the event object:

device
Return the device identifier.
time
The time of the event.
action
The action which caused the event.
json()
Function, returns the event in JSON form. See Section 9.11 [Cybermon JSON
message format|, page 66.
protobuf ()

Method, returns the event in protobuf wire format. This is only implemented
if protobuf support is detected during build). See Section 9.12 [Cybermon
protobuf event format|, page 77.

The structure of the event object depends on the action field.

trigger_up
Called when an attacker is seen coming on-stream. The event contains the
following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

Chapter 9: Reference 50

device describes the device ID
address contains the triggering IP address in string form.

trigger_down
Called when an attacker is seen going off-stream. The event contains the fol-
lowing fields:

time time of event in format YYYYMMDDTHHMMSS.sssZ
device describes the device ID

connection_up
Called when a stream-based connection (e.g. TCP) is made. The event contains
the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

connection_down
Similar to connection_up, called when a connection closes. The event contains
the following fields:

time time of event in format YYYYMMDDTHHMMSS.sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

icmp Called when an ICMP message is detected. The event contains the following
fields:
time time of event in format YYYYMMDDTHHMMSS. sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

type ICMP type value
code ICMP code value

http_request
Called when an HTTP request is observed. The event contains the following
fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

method HTTP method
url HTTP URL (derived from host and path).

Chapter 9: Reference 51

header HTTP header values in a Lua associative array.
body HTTP request body, if one exists.

http_response
Called when an HTTP response is observed. The event contains the following
fields:

time time of event in format YYYYMMDDTHHMMSS.sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

code HTTP response code

status HTTP response status

header HTTP response header, a Lua associative array.
body HTTP response body.

smtp_command
Called when an SMTP command is observed i.e. a single line message going to
the server from a client. The event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS.sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

command the SMTP command

smtp_response
Called when an SMTP response is observed. The event contains the following
fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

status the SMTP status value e.g. 200
text SMTP human-readable response text, an array of strings

smtp_data
Called when an SMTP payload is observed i.e. the body of text following the
DATA command. To aid processing, the SMTP protocol processor assembles
information from other commands. The event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion

Chapter 9: Reference

from

to

data

ftp_command

52

contains the email From address described in the MAIL FROM
command.

a list of addresses contained in all RCPT TO commands. An array
of strings.

contains the email body - it will be an RFC822 payload.

Called when an FTP command is observed i.e. a single line message going to
the server from a client. The event contains the following fields:

time

context

command

ftp_response

time of event in format YYYYMMDDTHHMMSS.sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

contains the command string.

Called when an FTP response is observed. That is, status going from server to
client following a command. The event contains the following fields:

time

context

status

text

dns_message

time of event in format YYYYMMDDTHHMMSS . sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

FTP status code e.g. 200.

contains the response text, described as a list of strings. Responses
may occur over a number of lines, hence the parameter is a list:
For single-line responses, there is only a single item in the list.

Called when a DNS message is observed. The event contains the following

fields:
time

context

header
query
answer
auth
add

time of event in format YYYYMMDDTHHMMSS . sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

describes the DNS header

the DNS queries

contains the answers in a response message
DNS nameserver authority descriptions

provides additional DNS records

ntp_timestamp_message
Called when a NTP timestamp message is observed. The event contains the
following fields:

time

time of event in format YYYYMMDDTHHMMSS . sssZ

Chapter 9: Reference

context

header

timestamp

ntp_control_message

93

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

the NTP header

contains the specific timestamp information

Called when a NTP control message is observed. The event contains the fol-
lowing fields:

time

context

header
control

ntp_private_message

time of event in format YYYYMMDDTHHMMSS.sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

the NTP header

specific NTP control information.

Called when a NTP control message is observed. The event contains the fol-
lowing fields:

time

context

header

private

time of event in format YYYYMMDDTHHMMSS . sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

the NTP header

specific NTP private information.

unrecognised_datagram
Called when a datagram is received using a protocol which isn’t recognised.
The event contains the following fields:

time

context

data

unrecognised_stream

time of event in format YYYYMMDDTHHMMSS . sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

the payload.

Called when connection-orientated data is received using a protocol which isn’t

recognised.
time

context

The event contains the following fields:
time of event in format YYYYMMDDTHHMMSS . sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

Chapter 9: Reference 54

imap

imap_ssl

pop3

pop3_ssl

data the payload.

position the stream position of the payload in bytes. Starts at 0 when stream
is connected, and increases with payload size.

Called when an IMAP message is detected - this is currently a port number
detection. The event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS.sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

data the payload.

Called when an IMAP SSL message is detected. This is currently a port number
detection. The event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS.sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

data the payload.

Called when a POP3 message is detected. This is currently a port number
detection. The event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS.sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

data the payload.

Called when a POP3 SSL message is detected. This is currently a port number
detection. The event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

data the payload.

sip_request

Called when a SIP request is observed. The event contains the following fields:
time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

from SIP originator

Chapter 9: Reference 55

to SIP destination
method SIP method
data the payload.

sip_response

sip_ssl

gre

gre_pptp

Called when a SIP request is observed. The event contains the following fields:
time time of event in format YYYYMMDDTHHMMSS. sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

code SIP response code
status SIP response status
from SIP originator

to SIP destination
data the payload.

Called when a SIP SSL message is detected. This is currently a port number
detection. The event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

data the payload.

Called when a GRE message with an unknown ethertype is detected. The event
contains the following fields:

time time of event in format YYYYMMDDTHHMMSS.sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

next_proto
the ethertype of the next protocol

key the key, if present. If the key is not present then it will default to
0.

sequence_number
the sequence number, if present. If the sequence number is not
present then it will default to 0.

payload the payload

Called when a GRE PPTP message with an unknown ethertype is detected.
The event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

Chapter 9: Reference 56

esp

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

next_proto
the ethertype of the next protocol

call_id the call id

sequence_number
the sequence number, if present. If the sequence number is not
present then it will default to 0.

acknowledgement_number
the acknowledgement number, if present. If the acknowledgement
number is not present then it will default to 0.

payload_length
the payload length

payload the payload
Called when an ESP packet is detected. The event contains the following fields:
time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

spi the SPI

sequence_number
the sequence number

payload_length
the payload length

payload the payload

unrecognised_ip_protocol

Called when an IP packet with an unhandled next protocol is detected. The
event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS.sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

next_proto
the protocol number of the next protocol

payload_length
the payload length

payload the payload

Chapter 9: Reference

o7

wlan Called when an 802.11 packet is detected. The event contains the following

fields:

time time of event in format YYYYMMDDTHHMMSS. sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

version the 802.11 version

type the type of the 802.11 dataframe

subtype the subtype of the 802.11 dataframe

flags the flags of the 802.11 dataframe

protected
the protected flag of the 802.11 dataframe, indicates if the payload
is encrypted

duration the duration

filt_addr
the filter MAC address

frag_num the fragmentation number of the dataframe

seq_num the sequence number of the dataframe

tls_unknown

Called when an unknown TLS message (i.e. one that isn’t covered by further
handling) is detected. The event contains the following fields:

time

context

tls

tls_client_hello

time of event in format YYYYMMDDTHHMMSS . sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

version The version of the TLS header.

content_type
The content type of the TLS message.

length The length of the TLS message.

Called when a TLS Client Hello message is detected. The event contains the
following fields:

time

context

time of event in format YYYYMMDDTHHMMSS . sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

Chapter 9: Reference 58

tls
version The TLS version specified in the client hello message.

session_id
The session ID of the message.

random_timestamp
The timestamp field in the random field of the TLS
message.

random_data
The data field in the random field of the TLS message.

cipher_suites
An ordered array of the cipher suites from the message.
Each entry is a table with id and name fields.

compression_methods
An ordered array of the compression methods from the
message. Each entry is a table with id and name fields.

extensions
An ordered array of the extensions from the message.
Each entry is a table with name, length and data fields.
(data will only be present if the length > 0)

tls_server_hello
Called when a TLS Server Hello message is detected. The event contains the
following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

tls
version The TLS version specified in the server hello message.

session_id
The session ID of the message.

random_timestamp
The timestamp field in the random field of the TLS
message.

random_data
The data field in the random field of the TLS message.

cipher_suite
The cipher suite from the message, as a table with id
and name fields.

compression_method
The compression method from the message, as a table
with id and name fields.

Chapter 9: Reference

99

extensions
An ordered array of the extensions from the message.
Each entry is a table with name, 1length and data fields.
(data will only be present if the length > 0)

tls_server_key_exchange
Called when a TLS Server Key Exchange message is detected. The event con-
tains the following fields:

time

context

tls

tls_certificates

time of event in format YYYYMMDDTHHMMSS . sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

key_exchange_algorithm
The key exchange algorithm being used.

curve_metadata
Metadata about the curve (if ecdh) being used, as
key:value pairs.

public_key
The public key field as bytes.

signature_hash_algorithm
The signature hash algorithm field.

signature_algorithm
The signature algorithm field.

signature_hash
The signature hash field. As a hex string

Called when a TLS certificates message is detected. The event contains the
following fields:

time

context

tls

time of event in format YYYYMMDDTHHMMSS . sssZ

a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

certificates
an ordered array of certificates, each in bytes.

tls_server_hello_done
Called when a TLS Server Hello Done message is detected. The event contains
the following fields:

time

time of event in format YYYYMMDDTHHMMSS.sssZ

Chapter 9: Reference 60

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

tls

tls_handshake_unknown
Called when a TLS handshake message is detected, that isnt explicitly handled.
The event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

tls
type the type of the handshake message
length the length of the handshake message

tls_certificate_request
Called when a TLS certificate request message is detected. The event contains
the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

tls

cert_types
An ordered array of certificate types

signature_algorithms
An ordered array of the Signature Algorithms from the
message. Fach entry is a table with hash_algorithm
and signature_algorithm fields.

distinguished_names
the distinguished names field in bytes

tls_client_key_exchange
Called when a TLS client key exchange message is detected. The event contains
the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

tls

key the key in bytes

Chapter 9: Reference 61

tls_certificate_verify
Called when a TLS certificate verify message is detected. The event contains
the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

tls

signature_algorithm
the Signature Algorithms from the message. As a ta-
ble with hash_algorithm and signature_algorithm
fields.

signature
the signature as a hex string

tls_change_cipher_spec
Called when a TLS change cipher spec message is detected. The event contains
the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

tls
val the value field

tls_handshake_finished
Called when a TLS handshake finished message is detected. The event contains
the following fields:

time time of event in format YYYYMMDDTHHMMSS.sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

tls
msg the encrypted message

tls_handshake_complete
Called when a TLS handshake has been completely finished - i.e. both sides of
the communication have sent change_cipher_spec and handshake_finished. The
event contains the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

Chapter 9: Reference 62

tls

tls_application_data

Called when a TLS application data message is detected. The event contains
the following fields:

time time of event in format YYYYMMDDTHHMMSS . sssZ

context a LUA userdata variable which can’t be access directly, but can be
used with the functions described below to access further informa-
tion from cybermon.

tls
version the version on the TLS header.

data the encrypted message.

Context object

From the LUA code there, the context variable has a number of method functions which
can be called:
context:get_type()

Returns the protocol type of the context e.g. http, tcp, udp, dns, ipd
context:get_parent ()

context:

context:

context

context:

context

Returns the parent context relating to a context. This can be used to travel
"up" the protocol stack. For example, call get_parent on a TCP context will
return the IP context.

get_src_addr ()
Returns the source address relating to a context. Returns two string variables:
the first is the address class e.g. ipv4, the second is the address value e.g.
1.2.3.4.

get_dest_addr()
Returns the destination address relating to a context. Returns two string vari-
ables: the first is the address class e.g. ipv4, the second is the address value
eg. 1.2.3.4.

:get_reverse()

Returns the context relating to the "other side" of a communication, but only
if this has been identified. On an HTTP response, get_reverse will return
the HTTP request. In the http_request function you will not be able to use
get_reverse to find the HT'TP response because the response does not exist
at the point the request is identified.

get_id ()
Returns a context’s unique ID. Can be useful for tracking, or can be used as
index into your own LUA structures to associate information with contexts.

:describe_src()

Returns a human readable description of the protocol stack using source ad-
dresses.

Chapter 9: Reference 63

context:describe_dest ()
Returns a human readable description of the protocol stack using source ad-
dresses.

context:get_device()
Returns the trigger ID associated with a "target".

context:get_network_info()
Returns three variables: the network name (from ETSI NetworkElementID),
the source and destination network addresses (IP addresses) for this data. These
are in normal IP address string format. Network name is the empty string, if
not provided in the input stream. See Section 9.2 [cyberprobe configuration],
page 35, for specifying the network.

context:get_trigger_info()
Returns the IP address which triggered this collection, if known. If not,
0.0.0.0x is returned. This is in normal TP address string format.

context:get_direction()
Returns the direction of the event with respect to the target device, if known.
This will be a string containing ‘FROM_DEVICE’, ‘TO_DEVICE’, or ‘NOT_KNOWN’.
The packet direction can only be determined if the ETSI stream delivery format
is in use. cyberprobe works out packet direction with respect to the addresses
specified in the cyberprobe.cfg file.

context:forge_tcp_reset()
Creates a TCP reset packet and directs it at the source address associated with
this context. Must have TCP protocol present in the stack.

context:forge_dns_response(header, queries, answers, add)
Creates a DNS message and directs it at the source address associated with
this context. The provided parameters are used as protocol data in the DNS
encoder.

gRPC object

If gRPC support is compiled into cybermon, a gRPC call containing the event, conforming
to eventstream protobuf format can be made by calling grpc:observe(e, service). The
first parameter is an event object, the second is a service address in ‘host:port’ format.
The gRPC call is used to deliver an event asynchronously, and nothing is returned from
the service. The grpc:observe call silently succeeds, and events are held in a queue until
delivered. The call will block if the queue achieves a pre-defined defined limit.

observer = {}
observer.event = function(e)
grpc:observe(e, "localhost:50051")

end

return observer

Chapter 9: Reference 64

If protobuf support is compiled into cybermon, a protobuf representation of a cybermon
event can be obtained by calling e:protobuf (). This obtains the event described in proto-
buf v3 wire format. No network communication takes place.

observer.event = function(e)
x = e:protobuf()
-- do something useful
end

See Section 9.12 [Cybermon protobuf event format|, page 77, for details of the protobuf
events.

9.10 cybermon example configurations

Example configuration files

forge-dns.lua
Example Lua script, spots DNS queries for ‘example.org’, and responds with
made-up IP addresses.

forge-reset.lua
Example script, spots TCP port 22 sessions (which is the port number normally
used for SSH sessions). If detected, a TCP reset is forged.

hexdump.lua
Like monitor.lua, but adds a hex-dump of event payloads to the output.

monitor.lua
For each Lua event, outputs a plain text summary of the output on standard
output.

zeromq.lua
For each Lua event, a JSON record is formatted and published to a ZeroMQ
queue on port 5555. See Section 9.11 [Cybermon JSON message format],
page 66.

amqgp-topic.lua
For each Lua event, a JSON record is formatted and published to a RabbitMQ
broker. See Section 9.11 [Cybermon JSON message format], page 66. Environ-
ment variables ‘AMQP_BROKER’, ‘AMQP_EXCHANGE’, ‘AMQP_ROUTING_KEY’ can be
used to tailor delivery.

pulsar.lua
For each Lua event, an event is formatted in protobuf wire format and pub-
lished to a Pulsar exchange. See Section 9.12 [Cybermon protobuf event for-
mat], page 77, for details. The following environment variables configure the
exchange:

‘PULSAR_BROKER’
Specifies broker location. Currently we use the Pulsar websocket
endpoint, default is ‘ws://localhost:8080’.

Chapter 9: Reference 65

‘PULSAR_TENANT’
Specifies tenant, default is ‘public’.

‘PULSAR_PERSISTENCY’
Specifies persistency of messages, default is ‘persistent’.

‘PULSAR_NAMESPACE’
Specifies namespace, default is ‘default’.

‘PULSAR_TOPIC’
Specifies topic, default is ‘cyberprobe’.

redis.lua
For each Lua event, a JSON record is formatted and RPUSH’d to a Redis
server defiend by the REDIS_SERVER environment variable which should be in
HOST:PORT form. Each message is JSON format, see Section 9.11 [Cybermon
JSON message format], page 66.

json.lua

For each Lua event, a JSON record is formatted and delivered to standard outut.
Each message is JSON format, see Section 9.11 [Cybermon JSON message
format], page 66.

quiet.lua
Does nothing. This is an empty code shell, and a good template to write your
own event handler.

protobuf.lua
Outputs protobuf-formatted messages in base64 format, one message per line.
Probably only useful for testing.

grpc.lua

For each Lua event, a gRPC call is made to a service defiend by the GRPC_
SERVICE environment variable which should be in HOST:PORT form. Each mes-
sage is protobuf format as defined by the cyberprobe.proto definition.

Utilities
The /usr/local/etc/cyberprobe/util directory contains some Lua utilities which can be
used by other Lua configuration files. They can be loaded as modules e.g.

local addr = require("util.addresses")

The utilities are:

addresses.lua
Some cybermon address handling functions.

json.lua The real JSON formatting is done here.

Chapter 9: Reference 66

9.11 Cybermon JSON message format

Cybermon’s ‘amgp-topic.lua’, ‘zeromq.lua’ and ‘redis.lua’ configuration files transmit
messages in JSON format. Each message is a JSON object with the following fields:

‘id’ Unique ID for the event: UUID format (e.g. 3c55d830-8d99-48al-c8cd-
ca77514a6d10).

‘device’ Device identifier / LIID.

‘network’ Network identifier, if ETSI stream delivery is used, and the network identifier is
used in cyberprobe.cfg. See Section 9.2 [cyberprobe configuration|, page 35,

‘origin’ If known, set to ‘network’ or ‘device’ depending on whether or not the event is
observed to originate from the device or, the device is the recipient. This asser-
tion is made by comparing the targeted IP address with the source/destination
IP addresses of an event. The ‘origin’ field will only be useful if a device IP
address is set in the cyberprobe. cfg file; if a wildcard address e.g. ‘0.0.0.0/0’
is set, it is not defined which of the source or destination addresses will trigger
in cyberprobe, and so the ‘origin’ field will be of no value. Further, the field
is only known if the ETSI stream format is used to deliver from cyberprobe to
cybermon.

‘action’ The event type. One of:

‘connected_up’
Records the creation of a stream-orientated connection (currently,
only TCP). This event is created for all connections whether the
protocol is recognised or not.

‘connected_down’
Records the closing of a stream-orientated connection (currently,
only TCP). This event is created for all connections whether the
protocol is recognised or not.

‘unrecognised_stream’
Records the sending of a PDU on a data stream transport (cur-
rently, only TCP) whose protocol has not been recognised.

‘unrecognised_datagram’
Records the sending of a PDU on a connection-less transport (cur-
rently, only UDP) whose protocol has not been recognised.

‘http_request’
Records the sending of an HTTP request.

‘http_response’
Records the sending of an HTTP response.

‘dns_message’
Records the sending of a DNS message (request and response).

‘icmp’ Records the sending of an ICMP message.

Chapter 9: Reference 67

‘smtp_command’
Records the sending of an SMTP command. This is a message from
client to server. Data commands are not recorded with this event
- there is an ‘smtp_data’ event which records this.

‘smtp_response’
Records the sending of a response to an SMTP command. This is
a status message from server to client.

‘smtp_data’
Records an SMTP data transaction, including the full SMTP data
payload (essentially an email).

‘ftp_command’
Records an FTP command (client to server).

‘ftp_response’
Records an FTP response (server to client).

‘ntp_message’
Records the sending of a NTP message, including the NTP hdr
(mode, version, leap second indicator)

‘imap’ Records the presence of IMAP data.

‘imap_ssl’
Records the presence of IMAP SSL data.

‘pop3’ Records the presence of POP.3 data.
‘pop3_ssl’

Records the presence of POP3 SSL data.
‘sip_request’

Records the sending of a SIP request.

‘sip_response’
Records the sending of a SIP response.

‘sip_ssl’ Records the presence of SIP SSL data.

‘gre’ Records the presence of a GRE data frame with an unhandled ether-

type.

‘grep_pptp’
Records the presence of a GRE PPTP data frame with an unhan-
dled ethertype.

‘esp’ Records the presence of ESP data.

‘unrecognised_ip_protocol’
Records the sending of a PDU over IP with an unrecognised next
protocol.

‘wlan’ Records the presence of 802.11 data.

‘tls_unknown’
Records the presence of a tls message.

Chapter 9: Reference 68

‘tls_client_hello’
Records the presence of a tls client hello message.

‘tls_server_hello’
Records the presence of a tls server hello message.

‘tls_certificates’
Records the presence of a tls certificates message.

‘tls_server_key_exchange’
Records the presence of a tls server key exchange message.

‘tls_server_hello_done’
Records the presence of a tls server hello done message.

‘t1ls_handshake_unknown’
Records the presence of a tls handshake message.

‘tls_certificate_request’

Records the presence of a tls certificate request message.
‘tls_client_key_exchange’

Records the presence of a tls client_key exchange message.
‘tls_certificate_verify’

Records the presence of a tls certificate verify message.
‘tls_change_cipher_spec’

Records the presence of a tls change cipher spec message.

‘t1ls_handshake_finished’
Records the presence of a tls handshake finished message.

‘tls_handshake_complete’
Records the that both sides of the TLS handshake are complete.

‘tls_application_data’
Records the presence of a tls application data message.

‘url’ The URL identified in any protocol which supports URL request/response e.g.
HTTP.

‘src’ A list of source protocol addresses travelling up the stack. Strings are of the
form protocol:address or protocol. Example protocol types are: tcp, udp
and ipv4.

‘dest’ A list of source protocol addresses travelling up the stack. Strings are of the
form protocol:address or protocol. Example protocol types are: tcp, udp
and ipv4.

‘time’ Time of the event in the form 2017-04-24T12:34:24.3417Z.

‘dns_message’
Emitted when action is dns_message. dns_message is itself a JSON object
containing the following fields:

‘query’ Describes DNS query records in ‘dns_message’ actions. Is a list of
objects with ‘name’; ‘type’ and ‘class’ fields containing strings for
name, type and class.

Chapter 9: Reference 69

‘answer’ Describes DNS answer records in ‘dns_message’ actions. Is a list
of objects with ‘name’, ‘type’ and ‘class’ and ‘address’ fields con-
taining strings for name, type and class and IP address.

‘type’ DNS message type, one of ‘query’ or ‘response’.

‘unrecognised_datagram’
Emitted when action is unrecognised_datagram. The value is a JSON object
ontaining the following fields:

‘datagram’
The datagram body, Base64 encoded.

‘unrecognised_stream’
Emitted when action is unrecognised_stream. The value is a JSON object
ontaining the following fields:

‘payload’ The datagram body, Base64 encoded.

‘position’
The stream position, 0 for a newly connected stream, increases with
each payload size.

‘icmp’ Emitted when action is icmp. The value is a JSON object ontaining the

following fields:

‘type’ ICMP type field.

‘code’ ICMP code field.

‘data’ Raw ICMP payload, Base64 encoded.

‘http_request’
Emitted when action is http_request. The value is a JSON object ontaining
the following fields:

‘method’” HTTP method.
‘header’ An object containing key/value pairs for HTTP header.
‘body’ HTTP body, Base64 encoded.

‘http_response’
Emitted when action is http_response. The value is a JSON object ontaining
the following fields:

‘code’ HTTP code field e.g. 200.

‘status’ HTTP status field e.g. OK.

‘header’ An object containing key/value pairs for HTTP header.
‘body’ HTTP body, Base64 encoded.

‘sip_request’
Emitted when action is sip_request. The value is a JSON object containing
the following fields:

‘method’ SIP method e.g. INVITE.

Chapter 9:

Reference 70

‘from’ The SIP caller address.
‘to’ The SIP callee address.
‘data’ SIP message body, base64-encoded.

‘sip_response’

‘sip_ssl’

‘imap’

‘imap_ssl’

Cpops’

‘pop3_ssl’

Emitted when action is sip_response. The value is a JSON object containing
the following fields:

‘code’ SIP response code.

‘status’ SIP response status.

‘from’ The SIP caller address.

‘to’ The SIP callee address.

‘data’ SIP message body, base64-encoded.

Emitted when action is sip_ssl.The value is a JSON object containing the
following fields:

‘payload’ The message payload, base64-encoded.

Emitted when action is imap.The value is a JSON object containing the fol-
lowing fields:

‘payload’ The message payload, base64-encoded.

Emitted when action is imap_ssl.The value is a JSON object containing the
following fields:

‘payload’ The message payload, base64-encoded.

Emitted when action is pop3.The value is a JSON object containing the fol-
lowing fields:

‘payload’ The message payload, base64-encoded.

Emitted when action is pop3_ssl.The value is a JSON object containing the
following fields:

‘payload’ The message payload, base64-encoded.

‘ntp_timestamp’

Emitted when action is ntp_timestamp. The value is a JSON object contain-
ing the following fields:

‘version’ NTP header version field.

‘mode’ NTP header mode field.

‘ntp_control’

Emitted when action is ntp_control. The value is a JSON object containing
the following fields:

‘version’ NTP header version field.

Chapter 9: Reference 71

‘mode’ NTP header mode field.

‘ntp_private’
Emitted when action is ntp_private. The value is a JSON object containing
the following fields:

‘version’ NTP header version field.
‘mode’ NTP header mode field.

‘ftp_command’
Emitted when action is ftp_command.The value is a JSON object containing
the following fields:

‘command’ The FTP command e.g. PASV.

‘ftp_response’
Emitted when action is ftp_response.The value is a JSON object containing
the following fields:

‘status’ The FTP response status e.g. 200.
‘text’ The FTP response human-readable text.

‘smtp_command’
Emitted when action is smtp_response.The value is a JSON object containing
the following fields:

‘command’ The SMTP command.

‘smtp_response’
Emitted when action is smtp_response.The value is a JSON object containing
the following fields:

‘status’ The SMTP response status.
‘text’ The SMTP response human-readable text.

‘smtp_data’
Emitted when action is smtp_data.The value is a JSON object containing the
following fields:

‘from’ The value of the SMTP MAIL FROM field, a string.
‘to’ A list of strings containing all SMTP RCPT TO field values.
‘body’ The SMTP email body.

‘gre’ Emitted when action is gre. The value is a JSON object containing the

following fields:

‘next_proto’
The value of the PROTOCOL TYPE field, a string.

‘key’ The value of the KEY field, a 32 bit number. Defaults to 0 if it is
not present in the data frame.

‘sequenceNo’
The value of the SEQUENCE NUMBER field, a 32 bit number.
Defaults to 0 if it is not present in the data frame.

Chapter 9: Reference 72

‘payload’ The GRE payload

‘gre_pptp’
Emitted when action is gre_pptp. The value is a JSON object containing the
following fields:

‘next_proto’
The value of the PROTOCOL TYPE field, a string.

‘call_id’ The value of the CALL ID field, a 16 bit number.

‘sequenceNo’
The value of the SEQUENCE NUMBER field, a 32 bit number.
Defaults to 0 if it is not present in the data frame.

‘acknowledgement _number’
The value of the ACKNOWLEDGEMENT NUMBER field, a 32
bit number. Defaults to 0 if it is not present in the data frame.

‘payload_length’
The length of the GRE PPTP payload

‘payload’ The GRE payload

‘esp’ Emitted when action is esp. The value is a JSON object containing the
following fields:
‘spi’ The value of the SPI field, a 32 bit number.
‘sequenceNo’

The value of the SEQUENCE NUMBER field, a 32 bit number.

‘payload_length’
The length of the ESP payload

‘payload’ NOT CURRENTLY OUTPUT, but couple be enabled in the lua
config The ESP payload

‘unrecognised_ip_protocol’
Emitted when action is unrecognised_ip_protocol. The value is a JSON
object containing the following fields:

‘next_proto’

The value of the PROTOCOL field in the IP header.

‘sequenceNo’

The value of the SEQUENCE NUMBER field, a 32 bit number.

‘payload_length’
The length of the IP payload

‘payload’ The IP payload

‘802.11° Emitted when 802.11 is unrecognised_ip_protocol. The value is a JSON
object containing the following fields:

‘version’ The value of the VERSION field in the header, an 8 bit number.

Chapter 9: Reference 73

‘type’ The value of the TYPE field, an 8 bit number.
‘subtype’ The value of the SUBTYPE field, an 8 bit number.
‘flags’ The flags field, an 8 bit number

‘protected’
Indicates if the protected flag is set, a boolean

‘filt_addr’
The MAC address in the FILTER ADDRESS field, a string.

‘frag_num’
The value in the FRAGMENTATION NUMBER field, an 8 bit

number.
‘seq_num’ The value in the SEQUENCE NUMBER field, a 16 bit number

‘duration’
The value in the DURATION field, a 16 bit number

‘t1ls_unknown’

Emitted when action is t1s_unknown. The value is a JSON object containing
the following fields:

‘t1s’
‘version’ The version of the TLS header.

‘content_type’
The content type of the TLS message.

‘length’ The length of the TLS message.

‘tls_client_hello’

Emitted when action is t1ls_client_hello. The value is a JSON object con-
taining the following fields:

‘tls’
‘version’ The version requested in the hello message.

‘session_id’
The session id of the message.

‘random’

‘timestamp’
The timestamp field of the random field of
the hello message.

‘data’ The data field of the random field of the
hello message.

‘cipher_suites’
An ordered array of the cipher suites names

‘compression_methods’
An ordered array of the compression methods names

Chapter 9: Reference 74

‘extensions’
An ordered array of the extensions, in the form of an
object with the keys name, length and data. (data
will only be present if length > 0)

‘tls_server_hello’
Emitted when action is tls_server_hello. The value is a JSON object con-
taining the following fields:

‘tls’
‘version’ The version requested in the hello message.

‘session_id’
The session id of the message.

‘random’

‘timestamp’
The timestamp field of the random field of
the hello message.

‘data’ The data field of the random field of the
hello message.

‘cipher_suite’
The name of the cipher suite

‘compression_method’
The name of the compression methods

‘extensions’
An ordered array of the extensions, in the form of an
object with the keys name, length and data. (data
will only be present if length > 0)

‘tls_certificates’
Emitted when action is t1ls_certificates. The value is a JSON object con-
taining the following fields:

‘tls’

‘certificates’
An ordered array of base64 encoded certificates.

‘tls_server_key_exchange’
Emitted when action is tls_server_key_exchange. The value is a JSON
object containing the following fields:

‘tls’

‘key_exchange_algorithm’
The key exchange algorithm being used.

‘curve_type’
The curve type field.

Chapter 9: Reference 75

‘curve_metadata’
Metadata about the curve being used. In the format
of an object of Key:Value pairs. (usually this will only
contain 'name’ and the value will be the named curve
being used)

‘public_key’
Base64 encoded public key.

‘signature_hash_algorithm’
The type of hash algorithm used for the signature.

‘signature_algorithm’
The type of algorithm used for the signature.

‘signature_hash’
The signature hash as a hex string

‘tls_server_hello_done’
Emitted when action is tls_server_hello_done. The value is an empty
JSON object with the key tls

‘tls_handshake_unknown’
Emitted when action is t1s_handshake_unknown. The value is a JSON object
containing the following fields:

‘tls’
‘type’ The type of the handshake message.
‘length’ The length of the message.

‘tls_certificate_request’
Emitted when action is tls_certificate_request. The value is a JSON
object containing the following fields:

‘t1s’

‘cert_types’
An ordered array of the certificate types.

‘signature_algorithms’
An ordered array of the signature algorithms, each
one an object with the keys hash_algorithm and
signature_algorithm.

‘distinguished_names’
The distinguished names field.

‘tls_client_key_exchange’
Emitted when action is tls_client_key_exchange. The value is a JSON
object containing the following fields:

‘tls’

‘key’ Base64 encoded key.

Chapter 9: Reference 76

‘tls_certificate_verify’
Emitted when action is tls_certificate_verify. The value is a JSON ob-
ject containing the following fields:

‘tls’

‘signature_algorithm’
The signature algorithm as an object with the keys
hash_algorithm and signature_algorithm.

‘signature’
The signature hash as a hex string.

‘tls_change_cipher_spec’
Emitted when action is tls_change_cipher_spec. The value is a JSON ob-
ject containing the following fields:

‘tls’
‘value’ The value from the change cipher spec message.

‘tls_handshake_finished’
Emitted when action is t1ls_handshake_finished. The value is a JSON ob-
ject containing the following fields:

‘tls’
‘message’ base64 encoded message.

‘tls_handshake_complete’
Emitted when action is tls_handshake_complete. The value is an empty
JSON object with the key tls

‘tls_application_data’
Emitted when action is t1s_application_data. The value is a JSON object
containing the following fields:

‘t1s’
‘version’ The version of TLS being used.
‘length’ The length of the message being sent.

‘location’
Not emitted by cybermon, but can be added to the message by evs-geoip. See
Section 9.17 [evs-geoip invocation|, page 79.

The location object contains potentially two child-objects: src and dest.
Both src and dest may contain the following fields, if the information is known:
‘city’ Name of the city from the GeolP database.

‘iso’ Country ISO code, 2 characters.

‘country’ Country name.

‘latitude’
Latitude, degrees north of the equator.

Chapter 9: Reference 77

‘longitude’
Longitude, degrees east of Greenwich.

‘indicators’
Not emitted by cybermon, but can be added to the message by evs-detector.
See Section 9.18 [evs-detector invocation]|, page 79.

The indicators object is an array of IOC hits, if any have been detected. Each
array element is an object with the following fields:

‘id’ 10C identifier.
‘type’ I0C type, one of: ipv4, hostname, tcp, udp, hostname, email,
url.

‘value’ IOC hit value.

‘description’
Human-readable text describing the I0C.

‘category’
Category tag for the indicator.

‘source’ Indicator source, a URL, could be the URL of a web page or report.

‘author’ Email address of the originator.

9.12 Cybermon protobuf event format

Cybermon’s ‘pulsar.lua’ configuration file transmit messages in protobuf format to a Pul-
sar exchange.

The cyberprobe.proto file in the source code contains the protobuf definition. The for-
mat is decoded by pub/sub subscribers in the Cyberprobe source code subscribers di-
rectory if you want a good starting point to code your own. See https://github.com/
cybermaggedon/cyberprobe/tree/master/subscribers.

See https: / / github . com / cybermaggedon / cyberprobe / blob / master / protos /
cyberprobe.proto for the protobuf definition file.

9.13 evs-monitor invocation

evs-monitor subscribes to a pub/sub topic for cybermon events, and upon receipt of events,
formats them for output in a human-readable manner.

Synopsis:
evs-monitor [BINDING]
Example:

evs-monitor
evs-monitor cyberprobe

‘BINDING’ Specifies the pub/sub topic to connect to. If not specified, defaults to
‘cyberprobe’.

https://github.com/cybermaggedon/cyberprobe/tree/master/subscribers
https://github.com/cybermaggedon/cyberprobe/tree/master/subscribers
https://github.com/cybermaggedon/cyberprobe/blob/master/protos/cyberprobe.proto
https://github.com/cybermaggedon/cyberprobe/blob/master/protos/cyberprobe.proto

Chapter 9: Reference 78

9.14 evs-elasticsearch invocation
evs-elasticsearch subscribes to a pub/sub topic for cybermon events, and upon receipt
of events, formats them for delivery to an ElasticSearch store.
Synopsis:
evs—elasticsearch [BINDING [ELASTICSEARCH-URL] 1]
Example:
evs—elasticsearch
evs-elasticsearch ioc http://elastic-store:9200/

‘BINDING’ Specifies the pub/sub topic to connect to. If not specified, defaults to ‘ioc’.

‘ELASTICSEARCH-URL’
Specifies the base URL for ElasticSearch. If not specified, defaults to
‘http://localhost:9200’.

9.15 evs-gaffer invocation

evs-gaffer subscribes to a pub/sub topic for cybermon events, and upon receipt of events,
formats them for delivery to a Gaffer store. The format used is intended to allow Gaffer
to be used as an RDF store with SPARQL query. To query and visualise the data stored
in Gaffer, see https://github.com/cybermaggedon/gaffer-tools. To get started with
Gaffer quickly, a docker container for development can be found at https://docker.io/
cybermaggedon/gaffer.

Synopsis:

evs-gaffer [BINDING [GAFFER-URL]]
Example:

evs-gaffer
evs-gaffer ioc \
http://gaffer-store:8080/rest/vl

‘BINDING’ Specifies the pub/sub topic to connect to. If not specified, defaults to ‘ioc’.

‘GAFFER-URL’
Specifies the base URL for Galffer. If not specified, defaults to
‘http://gaffer:8080/example-rest/vl’.

9.16 evs-cassandra invocation

evs-cassandra subscribes to a Pulsar pub/sub topic for cybermon events, and upon receipt
of events, formats them for delivery to a Cassandra store. The format used is intended to
allow Cassandra to be used as an RDF store with SPARQL query. To query and visualise the
data stored in Cassandra, see https://github.com/cybermaggedon/cassandra-redland.

Synopsis:
evs—-cassandra [BINDING [CASSANDRA-HOSTS] 1]
Example:

evs—-cassandra

https://github.com/cybermaggedon/gaffer-tools
https://docker.io/cybermaggedon/gaffer
https://docker.io/cybermaggedon/gaffer
https://github.com/cybermaggedon/cassandra-redland

Chapter 9: Reference 79

evs—cassandra ioc cassandral,cassandra?2
‘BINDING’ Specifies the pub/sub topic to connect to. If not specified, defaults to ‘ioc’.

‘CASSANDRA-HOSTS’
Specifies a comma-separated list of Cassandra store hosts to contact. If not
specified, defaults to ‘localhost’.

9.17 evs-geoip invocation

evs-geoip subscribes to a pub/sub topic for cybermon events, adds location information
from GeolP, and re-publishes the elaborated events. This effectively creates a processing
chain. The event subscription and publishing events should be different in order to avoid
creating an infinite loop.
Synopsis:

evs-geoip [BINDING [PUBLICATION]]
Example:

evs-geoip

evs—-geolip cyberprobe geo
‘BINDING’ Specifies the pub/sub topic to connect to. If not specified, defaults to

‘cyberprobe’.

‘PUBLICATION’
Specifies the pub/sub topic to publish to. If not specified, defaults to ‘geo’.

9.18 evs-detector invocation

evs-detector subscribes to a pub/sub topic for cybermon events, inspects them for IOCs,
and adds detection information if IOCs are observed before re-publishing the elaborated
events. This effectively creates a processing chain. The event subscription and publishing
events should be different in order to avoid creating an infinite loop.

The indicator file is specified by the ‘INDICATORS’ environment variable, the default is
indicators.json. The file format is the Section 9.19 [Cyberprobe indicator format],
page 79. When the file changes, the indicators are reloaded without the needed to restart
evs—detector.

Synopsis:

evs—-detector [BINDING [PUBLICATION]]
Example:

evs-detector

evs—-detector geo ioc

‘BINDING’ Specifies the pub/sub topic to connect to. If not specified, defaults to ‘geo’.

‘PUBLICATION’
Specifies the pub/sub topic to publish to. If not specified, defaults to ‘ioc’.

9.19 Cyberprobe indicator format

Chapter 9: Reference 80

Overview

The evs-detector subscriber implements detection against a set of indicators (see
Section 9.18 [evs-detector invocation]|, page 79. The indicators are presented in a file
containing JSON describing the indicators.

Indicators consist of two parts:
e A boolean expression which describes what to look for.

e A descriptor which describes changes made to the output event when an indicator
selects data.

Overall structure

The indicators file consists of a simple header containing the ‘description’ and ‘version’
fields. The ‘version’ field is intended to record a revision history identified for the indica-
tors, and should be changed to a unique value when an update occurs.

These fields are not used by evs-detector.

{
"description": "Some test data",
"version": "1"
"indicators": [
]
}

The ‘indicators’ field consists of a list of indicators.

Indicator

An indicator consists of: an ID, a descriptor which is tagged onto events when they hit
indicators, and a definition of what to hit on. The example below shows ID and descriptor.

{
"id": "6b7aa83f-8c43-4aaa-817f-5039%9adefl19ef",
"descriptor": {
"description": "URL of a page serving malware",
"category": "malware",
"author": "someone@example.com",
"source": "id:3245edd9-e0£3-4982-9406-fbf93b874555",
"type": "url",
"value": "http://malware.org/malware.dat"
3,
3

A descriptor contains a type/value pair which is a seed of information that an investigator
would want to search for for further information.

The descriptor fields are:

‘description’
A human-readable description of the purpose of this indicator.

Chapter 9:

‘category’

‘author’

‘source’

‘type’

Reference 81

A threat category for the indicator, which is used to group threats into type of
threat

Email address of indicator author
Source of the indicator, should be a URL e.g. a web-page address of a report

The type of the ‘value’ field, can be one of ‘hostname’, ‘url’, ‘ipv4’, ‘ipv6é’,
‘tcp’, ‘udp’, ‘email’.

Indicator value

The indicator value consists of four constructs:

e ‘and’
e ‘or’
e ‘not’
e Match

term

The value construct is included in the Indicator object alongside the ‘id’ field e.g.

{
"id": "845bcc85-49f5-427c-806c-5fe5984c2chc",
"descriptor": {
},
"type": "tcp",
"value": "11111"
}
or
{
"id": "845bcc85-49f5-427c-806c-5fe5984c2c5c",
"descriptor": {
},
"or": [
{
"type": "tcp",
"value": "11111"
},
{
"type": "tcp",
"value": "11112"
}
]
}

The four value constructs can be combined with multiple layers to any depth.

Chapter 9: Reference

Match term

82

The simple matching form consists of a type and value. The type field can be one of:
‘hostname’, ‘url’, ‘ipv4’, ‘ipv4.src’, ‘ipv4.dest’, ‘ipv6’, ‘ipv6.src’, ‘ipv6.dest’, ‘tcp’,

‘tcp.src’, ‘tcp.dest’, ‘udp’, ‘udp.src’, ‘udp.dest’, ‘email’. e.g.
{
"type": "ipv4.src",
"value": "192.168.0.1"
}

‘and’ construct

The ‘and’ construct is true if all of its children are true.

"alld": [

{
"type": "hostname",
"value": "example.com"

3,

{
"type": "tcp",
"value": "11112"

b

]

‘or’ construct

The ‘or’ construct is true if any of its children are true.

"or": [
{
"type": "hostname",
"value": "example.com"
3,
{
"type": "hostname",
"value": "example.com"
+
]

‘not’ construct

The ‘not’ construct is true if its child is false.

"not": {
"type": "hostname",
"value": "example.com"
+

Threat exchanges

See https://github. com/cybermaggedon/threat-exchanges for code which creates

indicator sets from threat exchanges.

https://github.com/cybermaggedon/threat-exchanges

Chapter 9: Reference 83

9.20 evs-dump invocation

evs-dump subscribes to a pub/sub topic for cybermon events, and dumps the raw JSON to
standard output.

Synopsis:

evs—dump [BINDING]
Example:

evs—dump

evs—dump cyberprobe

‘BINDING’ Specifies the pub/sub topic to connect to. If not specified, defaults to
‘cyberprobe’.

9.21 evs-alert invocation
evs-alert subscribes to a pub/sub topic for cybermon events, and outputs a human-
readable message when an IOC hits.
Synopsis:
evs—alert [BINDING]
Example:
evs—alert

evs—alert ioc

‘BINDING’ Specifies the pub/sub topic to connect to. If not specified, defaults to ‘ioc’.

9.22 taxii-client invocation

taxii-client provides a means to connect with a TAXII compliant server to acquire cyber
threat information. TAXII/STIX implementation is experimental and incomplete.

See https://taxii.mitre.org/ for more information on TAXII and STIX. Synopsis:

taxii-client [-h] [--host HOST] [--port PORT] [--path PATH]
[--collection COLLECTION] [--begin_timestamp BEGIN_TS]
[--end_timestamp END_TS] [--discovery] [--poll]
[--collection_information] [--subscribe] [--action ACT]
[--query QUERY] [--subs-id SUBSCRIPTION_ID]
[--inbox INBOX]

Example:
taxii-client -h taxii.com --poll

4_h7
‘-=help’ Shows command line usage.

‘~-host HOST
Specifies host to connect to.

‘-—port PORT
Specifies port number of the TAXII service.

https://taxii.mitre.org/

Chapter 9: Reference 84

‘~—path PATH
Specifies the URI of the service. Default is */’.

‘~-collection COLLECTION
Specifies the TAXII collection to use. Default is ‘default’.

‘-—begin_timestamp BEGIN
Specifies the TAXII collection to use. Default is ‘default’.

‘-—end_timestamp END’
Specifies the TAXII collection to use. Default is ‘default’.

‘--discovery’
Invokes a TAXII discovery action.

‘-—poll’ Invokes a TAXII poll action.

‘——collection_information’
Invokes a collection information action.

‘——subscribe’
Invokes a TAXII subscribe action.

‘-—action ACT
Specieis the subscription action to perform.

‘-—query QUERY’
Specifies the query to use for an inbox or poll action. Query takes the form:
‘type:value’. Type can be one of:

‘address’ CybOX address object value e.g. ‘address:1.2.3.4’

‘addresstype’
CybOX address object type e.g. ‘addresstype:e-mail’
‘domainname’
CybOX DNS name
‘port’ TCP/UDP port number e.g. ‘port:11111’
‘hash’ File object hash value.
‘id’ Object ID.
‘source’ Object source identifier.

Multiple query values may be specified in which case they are combined with a
logical AND.

‘~-subs-id SUBS-ID’
Specifies the subscription ID for a subscription operation.

‘-—inbox INBOX’
Specifies the inbox destination for subscriptions. The default value is
http://localhost:8888/.

Begin/end timestamps take the following form:
YYYY-MM-DDTHH:MM:SS.ssssss+/-hh:mm

Chapter 9: Reference 85

9.23 taxii-sync-json invocation

taxii-sync-json provides a means to connect with a TAXII compliant server to acquire
cyber threat information. taxii-sync-json uses a TAXII poll request, and reformats all
STIX information into a single JSON file which is written to the current directory. This
JSON form is intended to be used with evs-detector. See Section 9.18 [evs-detector
invocation], page 79.

TAXII/STIX implementation is experimental and incomplete.
See https://taxii.mitre.org/ for more information on TAXII and STIX. Synopsis:

taxii-sync-json [-h] [--host HOST] [--port PORT] [--path PATH]
[--collection COLLECTION] [--begin_timestamp BEGIN_TS]
[--end_timestamp END_TS]

Example:

taxii-sync-json -h taxii.com
L_h7
‘-=help’ Shows command line usage.

‘--host HOST
Specifies host to connect to.

‘-—port PORT
Specifies port number of the TAXII service.

‘--path PATH
Specifies the URI of the service. Default is */’.

‘~-collection COLLECTION
Specifies the TAXII collection to use. Default is ‘default’.

‘-—begin_timestamp BEGIN
Specifies the TAXII collection to use. Default is ‘default’.

‘-—end_timestamp END’
Specifies the TAXII collection to use. Default is ‘default’.

The JSON information is written to the current directory to a file called stix~COLLECTION-
combined. json where COLLECTION is the collection name chosen.
Begin/end timestamps take the following form:

YYYY-MM-DDTHH:MM:SS.ssssss+/-hh:mm

9.24 taxii-server invocation

taxii-server provides a TAXII compliant server to distribute cyber threat information.
TAXII/STIX implementation is experimental and incomplete.
See https://taxii.mitre.org/ for more information on TAXII and STIX. Synopsis:

taxii-server [-h] [--host HOST] [--port PORT] [--data-dir DATA_DIR]
[--db DB] [--sync-period SYNC_PERIOD]

https://taxii.mitre.org/
https://taxii.mitre.org/

Chapter 9: Reference 86

Example:

taxii-server --port 8100 --data-dir data/ --db stix.db
Cp
‘-=help’ Shows command line usage.

‘—=host HOST
Host to bind the HTTP service to.

‘~—port PORT
Specifies port number of the TAXII service.

‘--data-dir PATH
Specifies the directory where STIX files are to be placed. Directory structure
should be PATH/COLLECTION /STIX-FILE.

‘-=db DB’ Specifies a file to hold the STIX data. Default is stix_store.db. This is
created if it does not exist.

‘-—sync-period PERIOD’
Specifies the period for synchronising the data directory with the database.
Default is ‘1.

The TAXII server periodically checks the data directory with the contents of the database,
and updates the database accordingly. Deleting files results in deletion from the database,
adding files results in creation. Thus, the data directory is the master copy for the sync
process.

9.25 nhisll-rcvr invocation

nhisl1l-rcvr provides a TCP server which accepts connections from NHIS LI clients, de-
codes NHIS LI streams and outputs contained IP packets on the standard output in PCAP
format. TCP port number to use is provided on the command line. Synopsis:

nhisll-rcvr port-number

e port-number is the TCP port number to list to for connections. See [NHIS LI}, page 40.

nhisll-rcvr executes indefinitely - to end the program, a signal should be sent. e.g.
killall nhisll-rcvr

9.26 etsi-rcvr invocation

etsi-rcvr provides a TCP server which accepts connections from ETSI LI clients, decodes
ETSI LI streams and outputs contained IP packets on the standard output in PCAP format.
TCP port number to use is provided on the command line. Synopsis:

etsi-rcvr port-number

e port-number is the TCP port number to list to for connections. See [ETSI LI], page 40.

etsi-rcvr executes indefinitely - to end the program, a signal should be sent. e.g.

killall etsi-rcvr

Chapter 9: Reference 87

9.27 ElasticSearch model

Overview

When evs-elasticsearch is used observations are created in an ElasticSearch database.
These configuration files call the elastic.lua utility module. This section describes the
data model used in the ElasticSearch database
ElasticSearch accepts data in JSON form. evs-elasticsearch uses an index called
cyberprobe and an object type observation.

Here is an example of a JSON payload which is emitted for a DNS request:

{
"observation": {
"type": "query",
"answers": {7},
"device": "123456",
"dest": {
"udp": ["53"],
"dns": [""],
"ipv4": ["192.168.1.1"]
},
"queries": {
"name": ["news.bbc.co.uk"],
"type": ["1"],
"class": ["1"]
},
"SI‘C": {
"udp": ["57291"],
"dns": [""],
"ipv4": ["192.168.1.100"]
},
"time": "20141018T175059.366Z",
"action": "dns_message",
"id": 1
}
}

Common fields

The following fields are emitted for all observations:

observation
This is a JSON object which describes a Cyberprobe observation.

observation.oid
A unique object ID.

observation.time
Describes the time of the event in GMT. The components are:

o 4-digit year

Chapter 9: Reference 88

e 2-digit month

e 2-digit date

e Literal ‘T’.

e 2-digit hour (24-hour).
e 2-digit minute

e 2-digit second

e Literal ‘.’

e 3-digit milliseconds

e Literal ‘Z’

e.g. 20141018T175059.366Z.

observation.device
A string containing the targeted LIID / device ID.

observation.action
Describes the type of a Cyberprobe observation. See [Actions|, page 88, below.

observation.src
An object describing the full stack of protocol destination addresses. For each
name/value pair, the name is the protocol name, and the value is an array of
strings which are protocol addresses. For example:

"src": {
"udp": ["57291"],
"dns“: [llll],

"ipv4": ["192.168.1.100"]
}

This specifies a UDP source port number of 57291, and an IP source address of
192.168.1.100. Each protocol layer is list, allowing for more than one address
- protocol tunnels may result in more than IP address, for instance.

observation.dest
An object describing the full stack of protocol destination addresses, like
observation.src above, but for destination addresses.

Actions

The following action fields are defined:

‘connected_up’
Records the creation of a stream-orientated connection (currently, only TCP).
This event is created for all connections whether the protocol is recognised or
not.

‘connected_down’
Records the closing of a stream-orientated connection (currently, only TCP).
This event is created for all connections whether the protocol is recognised or
not.

Chapter 9: Reference 89

‘unrecognised_stream’
Records the sending of a PDU on a connection-less transport (currently, only
UDP) whose protocol has not been recognised.

‘unrecognised_datagram’
Records the sending of a PDU on a connection-less transport (currently, only
UDP) whose protocol has not been recognised.

‘http_request’
Records the sending of an HTTP request.

‘http_response’
Records the sending of an HTTP response.

‘dns_message’
Records the sending of a DNS message (request and response).

‘icmp’ Records the sending of an ICMP message.

‘smtp_command’
Records the sending of an SMTP command. This is a message from client
to server. Data commands are not recorded with this event - there is an
‘smtp_data’ event which records this.

‘smtp_response’
Records the sending of a response to an SMTP command. This is a status
message from server to client.

‘smtp_data’
Records an SMTP data transaction, including the full SMTP data payload
(essentially an email).

‘ftp_command’
Records an FTP command (client to server).

‘ftp_response’
Records an FTP response (server to client).

Connection up

Connection up events are created when connection-orientated transports (e.g. TCP) are
created, and have an action field of ‘connection_up’.

Connection down

Connection down events are created when connection-orientated transports (e.g. TCP) are
closed and have an action field of ‘connection_down’.

Unrecognised datagram

Unrecognised datagram events are created when a datagram is observed on an unrecognised
protocol, and have an action field of ‘unrecognised_datagram’. Such events include the
following fields:

observation.data
The datagram payload, base64 encoded.

Chapter 9: Reference 90

Unrecognised stream

Unrecognised stream events are created when data is observed to be sent on an
unrecognised connection-orientated protocol (e.g. TCP), and have an action field of
‘unrecognised_stream’. Such events include the following fields:

observation.data
The datagram payload, base64 encoded.

ICMP

ICMP events are created when an ICMP message is observed and have an action field of
‘icmp’. Such events include the following fields:

observation.data
The datagram payload, base64 encoded.

DNS messages

DNS events are created for DNS query and response messages, and have an action field of
‘dns_message’. Such events include the following fields:

observation.type
Used to describe the type of a DNS message, by interpreting the message flags.
Will be ‘query’ or ‘response’.

observation.queries
Contains a list of DNS queries. Example:

"queries": [

{
"class: "1",
"name": "news.bbc.co.uk",
IItypell : ||1ll

}
]

observation.answers
Contains a list of DNS responses. Example:

"answers": [
{
"class: "1",
"name": "newswww.bbc.net.uk",
Iltypell : II1II

"class: "1",

"address": "212.58.246.85",
"name": "newswww.bbc.net.uk",
IItypell : ||1ll

Chapter 9: Reference 91

},

{
"class: "1",
"address": "212.58.246.84",
"name": "newswww.bbc.net.uk",
Iltypell : n 1 n

+

HTTP request

HTTP request events are created for HTTP requests, and have an action field of
‘http_request’. Such events include fields:

observation.method
The HTTP method e.g. ‘GET’, ‘POST’.

observation.url
The HTTP URL e.g. ‘http://www.bbc.co.uk/index.html’.

observation.header
An object containing the request headers e.g.

{
"Accept": "k\/x",
"Referer": "http:\/\/www.bbc.co.uk\/news\/",
"Accept-Language": "en-gb,en;q=0.5",
"Host": "www.bbc.co.uk",
"Accept-Encoding": "gzip, deflate",
"Connection": "keep-alive",
"User-Agent": "Test/5.0"
3

observation.body
Describes the HT'TP body. This is a base64 encoding of the body.

HTTP response

HTTP response events are created for responses to HT'TP requests, and have an action
field of ‘http_response’. Such events include the following fields:

observation.code
The HTTP status code e.g. ‘200°.

observation.status
The HTTP status response e.g. ‘OK’.

observation.url
The HTTP URL e.g. ‘http://www.bbc.co.uk/index.html’. This is obtained
by studying the HTTP request, so will only be present where the HT'TP request
is observed.

Chapter 9: Reference 92

observation.header
An object containing the response headers e.g.

{
"Server": "Apache",
"Content-Type": "text/javascript"
3

observation.body
Describes the HT'TP response body, base64 encoded.

SMTP command

SMTP commands events are created when an SMTP command is sent from client to server,
and have an action field of ‘smtp_command’. Such events include the following fields:

observation.command
The SMTP command e.g. ‘EHLO’.

SMTP response

SMTP response events are created when an SMTP response is sent from server to client,
and have an action field of ‘smtp_response’. Such events include the following fields:

observation.status
The SMTP status e.g. ‘400’

observation.text
The SMTP text e.g. ‘["Hello malware.com. Pleased to meet you."]’.

SMTP data

SMTP data events are created when an SMTP email is sent from client to server, and have
an action field of ‘smtp_data’. Such events include the following fields:

observation.from
The SMTP “from” address. A string.

observation.to
The SMTP “to” addresses. An array of strings.

observation.data
The SMTP payload (RFC822), base64 encoded.

FTP command

FTP commands events are created when an FTP command is sent from client to server,
and have an action field of ‘ftp_command’. Such events include the following fields:

observation.command
The FTP command.

Chapter 9: Reference 93

FTP response

FTP response events are created when an FTP response is sent from server to client, and
have an action field of ‘ftp_response’. Such events include the following fields:

observation.status
The FTP status.

observation.text
The FTP text.

10 Architecture

3
network
under
protection .

cybermon-

cybermon-
gaffer

elasticsearch

snort can be used to sniff

the network and generate Cyberpl‘ol)e

alerts on known threats !

1P packets

are streamed

STIX data

snort iecee
................ in XML form
A D
- alerts are created cybermon
- when snort detects
P . . attackers...
et " alternatively
snort cyberprobe I
rules can be configured cybermon- A STIX

distribution
service.

detector

with static filters,
or tasked manually

Becanse,
JSON is
easier to

parse in LUA.)

STIX data in
JSON format

taxii-sync-json

A utility wheh gets the
latest indicators, and
writes them to a JSON file.

94

Cyberprobe consists of a set of loosely-coupled components which can be used together.
We prefer to use simple interfaces, and prefer to use interfaces which are standards. Here’s

how we envisage these components being used:

cyberprobe

is a network sniffer which collects packets which match an IP address list.
The packets collected are streamed using network streaming protocols. The
IP address match list can be statically configured (in a configuration file), can
be dynamically changed using a management interface, or can be dynamically

changed as a result of Snort alerts.

cybermon receives packets from cyberprobe, analyses them and generates

ses-

sion/transport level events which result in user-configurable actions. For each

event, a call is made to a Lua script which the caller provides.

evs—-detector

runs events past an IOC list, searching for cyber threat indicators. When these
indicators are observed, the indicator meta-data is also added to the JSON

events.

pulsar.lua

is a cybermon configuration file we provide which publishes data to a Pulsar
pub/sub exchange. It allows connection of consumers to the cybermon event

stream.

95

evs—cassandra
is an event subscriber which output cybermon events to a Cassandra store.

evs-elasticsearch
is an event subscriber which output cybermon events to a ElasticSearch store.

evs—gaffer
is an event subscriber which output cybermon events to a Gaffer store.

taxii-server
is a TAXII compliant server, which is used to distribute STIX rules over HTTP.

taxii-client-json
is a TAXII compliant client, which fetches STIX data over TAXII and write it
to a JSON file in a way that stix+db.lua can read.

snort is not part of cyberprobe, but it’s a great NIDS, so we use that.

Index

A

ACEIOM. ottt 49
ACHIONS . o oo 88
Alert ..o 83
Amazon Linux 6
AMQP ..o 64, 66
Apache Cassandra...................... 28, 78, 95
Apache Pulsar........... 64
apt-get ... 5
Architecture L. 94
Authentication.............. 13
AWS Traffic Mirroring.................. 33, 36, 48

BooSt. ..o 8
Build dependencies............. ...l 8
Build targets........... ... 9
Building ... 9

C

Cassandraooveeiiiiiiiennnnn. 28, 78, 95
certificate, cyberprobe configuration option.. 37
Checkout from git repository 7
Compilation ... 9
connected_up................ooiiiiii 20
Connection down 89
Connection reset. ... 13
Connection restart ...t 13
Connection Upovveeiiiiiiiii 89
Containersooviee e 7, 31
context...... ... i 20, 21
context object....... oL 62
Control ... 35
cybermon.............. ...l 1,2,9, 17
cybermon context object............. 62
cybermon events ... 49
Cybermon JSON message format. ... 64, 65, 66, 83
Cybermon protobuf event format........... 64, 77
cybermon, configuration 17, 64
cybermon, docker repository..................... 7
cybermon, example configurations 64
cybermon, features 2
cybermon, invocation................. 48
cybermon, pub/sub......... L 27, 28
cybermon, pulsar.lua configuration file........ 94
cyberprobe ool 1,2,9, 10
cyberprobe configuration 10
cyberprobe secure delivery, 37
Cyberprobe, architecture....................... 94
cyberprobe, configuration.................. 35, 86
cyberprobe, control 35

cyberprobe, delay................. 16, 19

96

Cyberprobe, docker repository................... 7
cyberprobe, docker repository................... 7
cyberprobe, endpoint.............. 12
cyberprobe, endpoints 35
cyberprobe, features...........ol 2
cyberprobe, interfaces....................... 35
cyberprobe, invocation 35
cyberprobe, management 13
cyberprobe, snort_alert...................... 35
cyberprobe, target.......... L 11
cyberprobe, targets ... 35
cyberprobe-cli............................. 9, 14
cyberprobe-cli, commands.................... 38
cyberprobe-cli, invocation.................... 37

DAG . 34
Dashboard.......... ..o i i 24
Debian..... ..o 5
Delay ..o 16, 19
dependencies. ... 8
Device ID.o 40, 88
Discussion forums......... ... oo 9
dnf ... 5
ANS_MESSAZE . ..o vttt i ittt 21
DN S . 17
Dockero 7, 31
Docker compose i 31
docker-compose-cp-snort.yml 31
docker-compose.yml..................., 31
Downloading. ... 9
DI . 1
ApKRg ... 5

ElasticSearch.................... 22, 28, 31, 87, 95
ElasticSearch model, actions 88
ElasticSearch, model 87
Endacecoooiiii 34
Endpoint i 12
endpoints............l 35
ELSI-TCVUT . oottt 9,12
etsi-rcvr, invocation..............oooooiiiii. 86
ETST .o 40
ETSTLIL. ..o 40
ETSITS 101 671 . oooiie e 40
ETST TS 102 232-1 .. evvviiiiiie i 40
ETSI TS 102 232-3ooiiiiii i 40
event 18, 20, 21
eventstream-service, invocation.............. 39
evs—alerto 9
evs-alert, invocation................oooii. 83

Index

evs-cassandra............oiiiiiiiiiiiin. 9, 95
evs-cassandra, invocation 28, 78
evs—detector 9, 77
evs—detector invocation....................... 94
evs—detector, invocation 79
eVS—dUMD 9
evs—dump, invocation............. 83
evs-elasticsearch............. 9, 95
evs-elasticsearch, invocation............. 28, 78
evs-gaffer ...l 9, 95
evs-gaffer, invocation..................... 29, 78
@VS—gEeOIp. 9, 76
evs-geoip, invocation..............o 79
evs-monitor, invocation.................... 30, 77
Executables.........o ol 9

F

Features, of cybermon................ 2
Features, of cyberprobe............ 2
Fedora........ ... o 5
Forging, DNS response..............c.ooovun... 21
FTP command..................ooiiiit. 92
FTP response........coooviiiiiiiiiiiiiii ... 93

Gaffer 29, 31, 78, 95
GeolP. ... 76, 79
Getting started ool 9
git repository 7
GLIC . 40
Graphstore ..., 28, 29, 78
gRPC........ 39, 63, 65, 77

H

http_request.........ooiiuiiiiiiiiiiiiinnn, 21
http_responsecciiiiiiiiiiiiiina., 18
HTTP requestcoooviiiiiiiiiiiiiiian 91
HTTP response.........c.oooiiiiiiiinn. 91

ICMP . 90
ifconfig ... 10
Indicator.......... ..o i 25,79
Indicator of compromise.................... 77,79
Indicator of Compromise....................... 25
Installation i 9
Integration with snort.......... 15
interfaces........ il 35
IOC ... 25, 77,79
IP address masko il 35
IP address matching 35

97
J
jsonm.lua ... 18
JSON ..o 23, 25, 64, 65, 66, 83
K
key, cyberprobe configuration option........... 37
Kibana, dashboard............................. 24
L
1ibpcap .o 8
libtaxidi ..oovvii 8
LIID .o 40, 88
Lua. 8
LUA events.ouoiii i 49
M
Management............... 13
Management client 37, 38
Management protocol.......................... 41
MmONIitor.lua. ...oovviiiit e 17
N
DICUTSES .« vttt ettt ettt 8
network attribute, cyberprobe.cfg..... 37, 63, 66
Network parameters..................ooiiiii... 9
nhisli-rcvr, invocation 86
NHIS 1.1 .o 40
NHIS 1.1 LI oo e 40
Overview of Cyberprobe 2
P
Packages. ... 9
Packet forgery ... 19
Packet injection........... oL 19
Packet inspection o oo 1
Privileged user.......... ... 11
protobuf 64, 77
Protobuf 39, 63, 65
pub/sub...... . o 64, 66
Pub/sub delivery...............cooooiia... 27, 28
publish/subscribeo 64, 66
Pulsar..... ..o 64
pulsar.lua configuration file................... 94

Q

queue delivery using Redis 65

Index

R

RabbitMQ ... 64, 66
readline 8
Reconnection 13
Redis ... 65, 66
Release history....... ... oL 3

S

SMTP command.............coooiiiiianan. 92
SMTP data........oooviiiiiiiii .. 92
SMTP reSponseouuveeieiniiannennenn. 92
3100 o 1,2
snort alerts....... ... i 16
snort, integration............... oo 15
snort, rules........ ... i 15
snort, signatures il 15
snort_alert......... 35
SO 37
SEAX . 8
Storing observationsol 22

Targetoooovi 11
TArgetS oo 35
targets, address mask...............ol 35
taxii-client, invocation................... ... 83
taxii-server, invocation................... ... 85
taxii-sync-json, invocation................... 85
TCP reset ..o 19

98
tepdump ... 8
telnet. ... 8
Threat indicator ..., 25
TS e 37
trusted-ca, cyberprobe configuration option... 37
TS 101 671 oo 40
TS 102 232-1 .o 40
TS 102 232-3 .o 40
U
UbBUNtU . ot 5
Unrecognised datagram 89
Unrecognised stream 90
\Va
Version history ... 3
Visualisation..............oooiiiiiiiiii, 22
VXLAN 33, 36, 48
Y
FUM . oot 6

